Nicolas Galanis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Budget analysis of a pseudo-single-phase transport model for slurry flows. European Physical Journal Plus, 2020, 135, 1.	2.6	0
2	Heat transfer of ice slurry flows in a horizontal pipe: A numerical study. International Journal of Thermal Sciences, 2019, 142, 54-67.	4.9	15
3	Three-dimensional OpenFOAM simulation to evaluate the thermal comfort of occupants, indoor air quality and heat losses inside an indoor swimming pool. Energy and Buildings, 2018, 167, 49-68.	6.7	22
4	Advanced numerical modeling of turbulent ice slurry flows in a straight pipe. International Journal of Thermal Sciences, 2018, 127, 294-311.	4.9	24
5	Thermo-economic analysis of a multiple-effect desalination system with ejector vapour compression. Energy, 2018, 144, 1037-1051.	8.8	20
6	Experimental and numerical investigation of isothermal ice slurry flow. International Journal of Thermal Sciences, 2018, 126, 82-95.	4.9	31
7	Flow visualizations and pressure drop measurements of isothermal ice slurry pipe flows. Experimental Thermal and Fluid Science, 2018, 99, 595-604.	2.7	32
8	Simulation of airflow with heat and mass transfer in an indoor swimming pool by OpenFOAM. International Journal of Heat and Mass Transfer, 2017, 109, 862-878.	4.8	25
9	Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: a case study. Energy Efficiency, 2017, 10, 527-548.	2.8	23
10	Exergy Flows inside a One Phase Ejector for Refrigeration Systems. Energies, 2016, 9, 212.	3.1	5
11	Comparison of ejector predicted performance by thermodynamic and CFD models. International Journal of Refrigeration, 2016, 68, 28-36.	3.4	29
12	Ejector design and performance prediction. International Journal of Thermal Sciences, 2016, 104, 315-329.	4.9	39
13	Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems. Applied Energy, 2016, 179, 1020-1031.	10.1	45
14	Three-dimensional transient heat transfer and airflow in an indoor ice rink with radiant heat sources. Building Simulation, 2016, 9, 175-182.	5.6	11
15	On the design and corresponding performance of steam jet ejectors. Desalination, 2016, 381, 15-25.	8.2	19
16	Thermo-ventilation study by OpenFOAM of the airflow in a cavity with heated floor. Building Simulation, 2015, 8, 271-283.	5.6	11
17	Equivalent Temperature-Enthalpy Diagram for the Study of Ejector Refrigeration Systems. Entropy, 2014, 16, 2669-2685.	2.2	11
18	Performance of ice slurry as cooling fluid for an indoor ice rink. Energy Efficiency, 2014, 7, 677-695.	2.8	1

NICOLAS GALANIS

#	Article	IF	CITATIONS
19	Thermodynamic study of multi-effect thermal vapour-compression desalination systems. Energy, 2014, 72, 69-79.	8.8	28
20	Numerical and experimental investigation of buoyancy effects in a plate heat exchanger. Applied Thermal Engineering, 2013, 51, 347-363.	6.0	5
21	Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source. International Journal of Low-Carbon Technologies, 2013, 8, i42-i46.	2.6	9
22	Stratification in Isothermal Ice-Slurry Pipe Flow. , 2013, , .		1
23	Optimal Design of ORC Systems with a Low-Temperature Heat Source. Entropy, 2012, 14, 370-389.	2.2	39
24	New Viscosity Data for CuO-Water Nanofluid – The Hysteresis Phenomenon Revisited. Advances in Science and Technology, 2012, 81, 101-106.	0.2	6
25	Thermosolutal mixed convection and flow-reversal in an inclined parallel-plate channel. Heat and Mass Transfer, 2012, 48, 1601-1613.	2.1	3
26	Thermodynamic analysis and optimization of power cycles using a finite low-temperature heat source. International Journal of Energy Research, 2012, 36, 871-885.	4.5	18
27	Experimental study of hydraulic and thermal behavior of an ice slurry in a shell and tube heat exchanger. Experimental Thermal and Fluid Science, 2012, 37, 130-141.	2.7	26
28	Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger. Applied Thermal Engineering, 2011, 31, 4113-4124.	6.0	17
29	Optimum design of ejector refrigeration systems with environmentally benign fluids. International Journal of Thermal Sciences, 2011, 50, 1562-1572.	4.9	54
30	Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and two-equation turbulent models. International Journal of Thermal Sciences, 2011, 50, 1499-1511.	4.9	56
31	Heat transfer and fluid flow in a plate heat exchanger part I. Experimental investigation. International Journal of Thermal Sciences, 2011, 50, 1492-1498.	4.9	64
32	A new model for nanofluid conductivity based on the effects of clustering due to Brownian motion. Heat Transfer - Asian Research, 2011, 40, 352-368.	2.8	4
33	Yearly simulation of the interaction between an ice rink and its refrigeration system: A case study. International Journal of Refrigeration, 2011, 34, 383-389.	3.4	11
34	EFFECTS OF BUOYANCY ON THE PERFORMANCE OF A VERTICAL DOUBLE-PIPE HEAT EXCHANGER. Computational Thermal Sciences, 2011, 3, 345-357.	0.9	1
35	Thermal and economic evaluation of heat recovery measures for indoor ice rinks. Applied Thermal Engineering, 2010, 30, 2103-2108.	6.0	5
36	Prediction of 3D airflow and temperature field in an indoor ice rink with radiant heat sources. Building Simulation, 2010, 3, 153-163.	5.6	13

NICOLAS GALANIS

#	Article	IF	CITATIONS
37	Flow reversal in combined laminar mixed convection heat and mass transfer with phase change in a vertical channel. International Journal of Heat and Fluid Flow, 2010, 31, 711-721.	2.4	17
38	Parametric study and optimization of a transcritical power cycle using a low temperature source. Applied Energy, 2010, 87, 1349-1357.	10.1	188
39	Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3–H2O mixture as working fluid. International Journal of Thermal Sciences, 2010, 49, 48-58.	4.9	51
40	Finite time thermodynamics study and exergetic analysis of ammonia–water absorption systems. International Journal of Thermal Sciences, 2010, 49, 1264-1276.	4.9	14
41	Evaluation of confined natural and forced convection predictions by different turbulence models. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19, 5-24.	2.8	11
42	Effects of dissipation and temperature-dependent viscosity on the performance of plate heat exchangers. Applied Thermal Engineering, 2009, 29, 3132-3139.	6.0	15
43	Quasi-steady state model of an ice rink refrigeration system. Building Simulation, 2009, 2, 119-132.	5.6	6
44	Prediction of yearly energy requirements of indoor ice rinks. Energy and Buildings, 2009, 41, 500-511.	6.7	22
45	Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy, 2009, 86, 1055-1063.	10.1	268
46	Wood chip drying with an absorption heat pump. Energy, 2008, 33, 500-512.	8.8	44
47	Calculation of refrigeration loads by convection, radiation and condensation in ice rinks using a transient 3D zonal model. Applied Thermal Engineering, 2008, 28, 1782-1790.	6.0	35
48	Turbulent Natural Convection in Non-Partitioned and Partitioned Cavities: CFD Predictions with Different Two-Equation Models. Engineering Applications of Computational Fluid Mechanics, 2008, 2, 393-403.	3.1	3
49	Numerical analysis of turbulent buoyant flows in enclosures: Influence of grid and boundary conditions. International Journal of Thermal Sciences, 2007, 46, 727-738.	4.9	33
50	Entropy generation in a binary gas mixture in the presence of thermal and solutal mixed convection. International Journal of Thermal Sciences, 2006, 45, 51-59.	4.9	8
51	NUMERICAL ANALYSIS OF TURBULENT NATURAL CONVECTION IN A CAVITY. , 2006, , .		5
52	Mixed convection with heat and mass transfer in horizontal tubes. International Communications in Heat and Mass Transfer, 2005, 32, 511-519.	5.6	9
53	Laminar mixed convection of humid air in a vertical channel with evaporation or condensation at the wall. International Journal of Thermal Sciences, 2004, 43, 531-539.	4.9	51
54	Analytical Solution for Fully Developed Mixed Convection Between Parallel Vertical Plates With Heat and Mass Transfer. Journal of Heat Transfer, 2004, 126, 381-388.	2.1	57

#	Article	IF	CITATIONS
55	Developing laminar mixed convection with heat and mass transfer in horizontal and vertical tubes. International Journal of Thermal Sciences, 2002, 41, 319-331.	4.9	24