Maria Ricciardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9797458/publications.pdf

Version: 2024-02-01

687363 794594 19 605 13 19 citations h-index g-index papers 19 19 19 496 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New analytical approach to monitoring air quality in historical monuments through the isotopic ratio of CO2. Environmental Science and Pollution Research, 2022, 29, 29385-29390.	5.3	14
2	Investigations on historical monuments' deterioration through chemical and isotopic analyses: an Italian case study. Environmental Science and Pollution Research, 2022, 29, 29409-29418.	5. 3	10
3	Catalytic Routes to Produce Polyphenolic Esters (PEs) from Biomass Feedstocks. Catalysts, 2022, 12, 447.	3. 5	4
4	Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. Toxics, 2022, 10, 365.	3.7	46
5	Microplastics in the Aquatic Environment: Occurrence, Persistence, Analysis, and Human Exposure. Water (Switzerland), 2021, 13, 973.	2.7	56
6	Leonardo da Vinci's "Last Supper― a case study to evaluate the influence of visitors on the Museum preservation systems. Environmental Science and Pollution Research, 2021, , 1.	5 . 3	9
7	Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water (Switzerland), 2021, 13, 1347.	2.7	103
8	Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics, 2021, 9, 224.	3.7	105
9	Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes. Science of the Total Environment, 2021, 797, 149206.	8.0	23
10	Application of 13C Quantitative NMR Spectroscopy to Isotopic Analyses for Vanillin Authentication Source. Foods, 2021, 10, 2635.	4.3	7
11	Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chemical Engineering Journal, 2020, 382, 122934.	12.7	73
12	Characterization and authentication of commercial cleaning products formulated with biobased surfactants by stable carbon isotope ratio. Talanta, 2020, 219, 121256.	5 . 5	23
13	A step towards bio-surfactants: Monoalkylglyceryl ethers synthesis through glycidol alcoholysis with long-chain alcohols catalyzed by Al(OTf)3. Sustainable Chemistry and Pharmacy, 2020, 17, 100281.	3.3	6
14	Regioselective Ringâ€Opening of Glycidol to Monoalkyl Glyceryl Ethers Promoted by an [OSSO]â€Fe ^{III} Triflate Complex. ChemSusChem, 2019, 12, 3448-3452.	6.8	14
15	First Attempt of Glycidolâ€ŧoâ€Monoalkyl Glyceryl Ethers Conversion by Acid Heterogeneous Catalysis: Synthesis and Simplified Sustainability Assessment. ChemSusChem, 2018, 11, 1829-1837.	6.8	20
16	Bio-Glycidol Conversion to Solketal over Acid Heterogeneous Catalysts: Synthesis and Theoretical Approach. Catalysts, 2018, 8, 391.	3.5	13
17	Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. ChemSusChem, 2017, 10, 2291-2300.	6.8	29
18	Bio-propylene glycol as value-added product from Epicerol \hat{A}^{\otimes} process. Sustainable Chemistry and Pharmacy, 2017, 6, 10-13.	3.3	22

#	Article	IF	CITATIONS
19	Synthesis of Monoalkyl Glyceryl Ethers by Ring Opening of Glycidol with Alcohols in the Presence of Lewis Acids. ChemSusChem, 2016, 9, 3272-3275.	6.8	28