
Marco Muzi-Falconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cellular Signalling, 2022, 93, 110303.	3.6	8
2	Replication DNA Polymerase α – Primase Complex: A Fundamental Element in the Maintenance of Genome Integrity. , 2021, , 71-79.		0
3	Phosphorylation of H3-Thr3 by Haspin Is Required for Primary Cilia Regulation. International Journal of Molecular Sciences, 2021, 22, 7753.	4.1	7
4	<i>VID22</i> counteracts G-quadruplex-induced genome instability. Nucleic Acids Research, 2021, 49, 12785-12804.	14.5	5
5	EXO1: A tightly regulated nuclease. DNA Repair, 2020, 93, 102929.	2.8	23
6	Tau and DNA Damage in Neurodegeneration. Brain Sciences, 2020, 10, 946.	2.3	22
7	One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. International Journal of Molecular Sciences, 2020, 21, 1706.	4.1	17
8	Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discovery, 2020, 6, 42.	6.7	12
9	Haspin Modulates the G2/M Transition Delay in Response to Polarization Failures in Budding Yeast. Frontiers in Cell and Developmental Biology, 2020, 8, 625717.	3.7	5
10	gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Frontiers in Cell and Developmental Biology, 2020, 8, 589993.	3.7	4
11	Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B. Stem Cell Research, 2019, 41, 101620.	0.7	6
12	Generation of three isogenic induced Pluripotent Stem Cell lines (iPSCs) from fibroblasts of a patient with Aicardi Goutières Syndrome carrying a c.2471G>A dominant mutation in IFIH1 gene. Stem Cell Research, 2019, 41, 101623.	0.7	4
13	Generation of three iPSC lines from fibroblasts of a patient with Aicardi Goutières Syndrome mutated in TREX1. Stem Cell Research, 2019, 41, 101580.	0.7	8
14	RNase H activities counteract a toxic effect of Polymerase \hat{I} in cells replicating with depleted dNTP pools. Nucleic Acids Research, 2019, 47, 4612-4623.	14.5	21
15	Coordinated Activity of Y Family TLS Polymerases and EXO1 Protects Non-S Phase Cells from UV-Induced Cytotoxic Lesions. Molecular Cell, 2018, 70, 34-47.e4.	9.7	26
16	Study of UV-induced DNA Repair Factor Recruitment: Kinetics and Dynamics. Methods in Molecular Biology, 2018, 1672, 101-105.	0.9	4
17	Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy. Methods in Molecular Biology, 2018, 1672, 557-573.	0.9	1
18	Measuring the Levels of Ribonucleotides Embedded in Genomic DNA. Methods in Molecular Biology, 2018, 1672, 319-327.	0.9	5

Marco Muzi-Falconi

#	Article	IF	CITATIONS
19	The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA. Biophysical Journal, 2017, 113, 1373-1382.	0.5	11
20	Exploring the pH Sensitivity of Poly(allylamine) Phosphate Supramolecular Nanocarriers for Intracellular siRNA Delivery. ACS Applied Materials & Interfaces, 2017, 9, 38242-38254.	8.0	38
21	Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Systems, 2016, 3, 264-277.e10.	6.2	26
22	Reduction of hRNase H2 activity in Aicardi–GoutiÔres syndrome cells leads to replication stress and genome instability. Human Molecular Genetics, 2015, 24, 649-658.	2.9	67
23	The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Research, 2015, 43, 5182-5193.	14.5	31
24	Novel <i>DYT11</i> gene mutation in patients without dopaminergic deficit (SWEDD) screened for dystonia. Neurology, 2014, 83, 1155-1162.	1.1	22
25	In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC Systems Biology, 2013, 7, 24.	3.0	7
26	Yeast Haspin Kinase Regulates Polarity Cues Necessary for Mitotic Spindle Positioning and Is Required to Tolerate Mitotic Arrest. Developmental Cell, 2013, 26, 483-495.	7.0	22
27	A blooming resolvase at chromosomal fragile sites. Nature Cell Biology, 2013, 15, 883-885.	10.3	7
28	Ribonucleotides Misincorporated into DNA Act as Strand-Discrimination Signals in Eukaryotic Mismatch Repair. Molecular Cell, 2013, 50, 323-332.	9.7	139
29	To trim or not to trim: Progression and control of DSB end resection. Cell Cycle, 2013, 12, 1848-1860.	2.6	12
30	Non-Canonical CRL4A/4BCDT2 Interacts with RAD18 to Modulate Post Replication Repair and Cell Survival. PLoS ONE, 2013, 8, e60000.	2.5	8
31	Cell Cycle Checkpoints. , 2013, , 254-259.		0
32	NER and DDR: Classical music with new instruments. Cell Cycle, 2012, 11, 668-674.	2.6	32
33	RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA. Molecular Cell, 2012, 45, 99-110.	9.7	153
34	Sensing of Replication Stress and Mec1 Activation Act through Two Independent Pathways Involving the 9-1-1 Complex and DNA Polymerase ε. PLoS Genetics, 2011, 7, e1002022.	3.5	40
35	Physical and functional crosstalk between Fanconi anemia core components and the GINS replication complex. DNA Repair, 2011, 10, 149-158.	2.8	15
36	Mind the gap: Keeping UV lesions in check. DNA Repair, 2011, 10, 751-759.	2.8	33

#	Article	IF	CITATIONS
37	Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13647-13652.	7.1	64
38	14-3-3 Proteins Regulate Exonuclease 1–Dependent Processing of Stalled Replication Forks. PLoS Genetics, 2011, 7, e1001367.	3.5	45
39	Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nature Genetics, 2010, 42, 313-321.	21.4	291
40	Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway. PLoS Genetics, 2010, 6, e1000763.	3.5	49
41	Dynamics of Rad9 Chromatin Binding and Checkpoint Function Are Mediated by Its Dimerization and Are Cell Cycle–Regulated by CDK1 Activity. PLoS Genetics, 2010, 6, e1001047.	3.5	59
42	Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation. Molecular Cell, 2010, 40, 50-62.	9.7	99
43	Saccharomyces CDK1 Phosphorylates Rad53 Kinase in Metaphase, Influencing Cellular Morphogenesis. Journal of Biological Chemistry, 2009, 284, 32627-32634.	3.4	16
44	Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair, 2009, 8, 1055-1067.	2.8	82
45	Checkpoint response to DNA damage. DNA Repair, 2009, 8, 973-973.	2.8	3
46	Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO Journal, 2008, 27, 1502-12.	7.8	159
47	Phosphorylation of the Budding Yeast 9-1-1 Complex Is Required for Dpb11 Function in the Full Activation of the UV-Induced DNA Damage Checkpoint. Molecular and Cellular Biology, 2008, 28, 4782-4793.	2.3	109
48	Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair, 2007, 6, 121-127.	2.8	53
49	One-step high-throughput assay for quantitative detection of β-galactosidase activity in intact Gram-negative bacteria, yeast, and mammalian cells. BioTechniques, 2006, 40, 433-440.	1.8	48
50	Alk1 and Alk2 are Two New Cell Cycle-Regulated Haspin-Like Proteins in Budding Yeast. Cell Cycle, 2006, 5, 1464-1471.	2.6	28
51	DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17325-17330.	7.1	107
52	The 9-1-1 Checkpoint Clamp Physically Interacts with Polζ and Is Partially Required for Spontaneous Polζ-dependent Mutagenesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 38657-38665.	3.4	104
53	The DNA Damage Checkpoint Response Requires Histone H2B Ubiquitination by Rad6-Bre1 and H3 Methylation by Dot1. Journal of Biological Chemistry, 2005, 280, 9879-9886.	3.4	249
54	Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO Journal, 2004, 23, 429-438.	7.8	112

Marco Muzi-Falconi

#	Article	IF	CITATIONS
55	DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. DNA Repair, 2004, 3, 1591-1599.	2.8	14
56	Sometimes size does matter. European Journal of Cancer, 2003, 39, 1337-1338.	2.8	0
57	Correlation between Checkpoint Activation and in Vivo Assembly of the Yeast Checkpoint Complex Rad17-Mec3-Ddc1. Journal of Biological Chemistry, 2003, 278, 22303-22308.	3.4	5
58	Mechanisms Controlling the Integrity of Replicating Chromosomes in Budding Yeast. Cell Cycle, 2003, 2, 563-566.	2.6	12
59	The DNA PolymerasePrimase Complex: Multiple Functions and Interactions. Scientific World Journal, The, 2003, 3, 21-33.	2.1	56
60	Budding Yeast DNA Damage Checkpoint: A Signal Transduction-Mediated Surveillance System. , 2003, , 197-202.		1
61	Mechanisms controlling the integrity of replicating chromosomes in budding yeast. Cell Cycle, 2003, 2, 564-7.	2.6	7
62	A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12997-13002.	7.1	13
63	The DNA replication checkpoint response stabilizes stalled replication forks. Nature, 2001, 412, 557-561.	27.8	693
64	DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 451, 187-196.	1.0	110
65	DNA damage checkpoint in budding yeast. EMBO Journal, 1998, 17, 5525-5528.	7.8	145
66	Regulation of the replication initiator protein p65 ^{<i>cdc18</i>} by CDK phosphorylation. Genes and Development, 1997, 11, 2767-2779.	5.9	161
67	cdc18+ regulates initiation of DNA replication in Schizosaccharomyces pombe Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1566-1570.	7.1	124
68	DNA replication: Controlling initiation during the cell cycle. Current Biology, 1996, 6, 229-233.	3.9	33
69	Orp1, a member of the Cdc18/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12475-12479.	7.1	98
70	Overproduction and functional analysis of DNA primase subunits from yeast and mouse. Gene, 1992, 113, 199-205.	2.2	9
71	Nucleotide sequence and characterization of temperature-sensitive pol1 mutants of Saccharomyces cerevisiae. Gene, 1990, 90, 99-104.	2.2	54
72	The yeast DNA polymerase-primase complex: Genes and proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 951, 268-273.	2.4	16

#	Article	IF	CITATIONS
73	Co-immunoprecipitation of human mitochondrial proteases AFG3L2 and paraplegin heterologously expressed in yeast cells. Protocol Exchange, 0, , .	0.3	1