
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979269/publications.pdf Version: 2024-02-01



CAL RITAN

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 330-335.                                                   | 7.1  | 1,208     |
| 2  | Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chemistry, 2009, 1, 326-331.                                                                                   | 13.6 | 835       |
| 3  | Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. Journal of Neuroscience Research, 2002, 69, 567-577.                                                                  | 2.9  | 540       |
| 4  | Amyloid Î <sup>2</sup> -Protein Oligomerization. Journal of Biological Chemistry, 2001, 276, 35176-35184.                                                                                                                                       | 3.4  | 362       |
| 5  | In silico study of amyloid Â-protein folding and oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17345-17350.                                                                      | 7.1  | 327       |
| 6  | Amyloid β-Protein: Monomer Structure and Early Aggregation States of Aβ42 and Its Pro19Alloform.<br>Journal of the American Chemical Society, 2005, 127, 2075-2084.                                                                             | 13.7 | 321       |
| 7  | Elucidation of Primary Structure Elements Controlling Early Amyloid β-Protein Oligomerization.<br>Journal of Biological Chemistry, 2003, 278, 34882-34889.                                                                                      | 3.4  | 272       |
| 8  | Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease.<br>Journal of Clinical Investigation, 2003, 112, 415-422.                                                                                 | 8.2  | 263       |
| 9  | Lysine-Specific Molecular Tweezers Are Broad-Spectrum Inhibitors of Assembly and Toxicity of Amyloid<br>Proteins. Journal of the American Chemical Society, 2011, 133, 16958-16969.                                                             | 13.7 | 263       |
| 10 | Amyloid beta-protein monomer structure: A computational and experimental study. Protein Science, 2006, 15, 420-428.                                                                                                                             | 7.6  | 236       |
| 11 | Elucidation of Amyloid β-Protein Oligomerization Mechanisms: Discrete Molecular Dynamics Study.<br>Journal of the American Chemical Society, 2010, 132, 4266-4280.                                                                              | 13.7 | 231       |
| 12 | Neurotoxic protein oligomers — what you see is not always what you get. Amyloid: the International<br>Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of<br>Amyloidosis, 2005, 12, 88-95. | 3.0  | 208       |
| 13 | Rapid Photochemical Cross-LinkingA New Tool for Studies of Metastable, Amyloidogenic Protein<br>Assemblies. Accounts of Chemical Research, 2004, 37, 357-364.                                                                                   | 15.6 | 204       |
| 14 | Elucidating Amyloid β-Protein Folding and Assembly:  A Multidisciplinary Approach. Accounts of<br>Chemical Research, 2006, 39, 635-645.                                                                                                         | 15.6 | 203       |
| 15 | Increased T cell reactivity to amyloid $\hat{l}^2$ protein in older humans and patients with Alzheimer disease.<br>Journal of Clinical Investigation, 2003, 112, 415-422.                                                                       | 8.2  | 173       |
| 16 | C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced<br>neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2008,<br>105, 14175-14180.                       | 7.1  | 159       |
| 17 | A Molecular Switch in Amyloid Assembly:  Met <sup>35</sup> and Amyloid β-Protein Oligomerization.<br>Journal of the American Chemical Society, 2003, 125, 15359-15365.                                                                          | 13.7 | 158       |
| 18 | A Novel "Molecular Tweezer―Inhibitor of α-Synuclein Neurotoxicity in Vitro and in Vivo.<br>Neurotherapeutics, 2012, 9, 464-476.                                                                                                                 | 4.4  | 148       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CNS-Derived Blood Exosomes as a Promising Source of Biomarkers: Opportunities and Challenges.<br>Frontiers in Molecular Neuroscience, 2020, 13, 38.                                                                                       | 2.9 | 144       |
| 20 | Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation.<br>Chemical Communications, 2016, 52, 11318-11334.                                                                                    | 4.1 | 115       |
| 21 | A Key Role for Lysine Residues in Amyloid β-Protein Folding, Assembly, and Toxicity. ACS Chemical Neuroscience, 2012, 3, 473-481.                                                                                                         | 3.5 | 110       |
| 22 | Comparison of Three Amyloid Assembly Inhibitors: The Sugar <i>scyllo-</i> Inositol, the Polyphenol<br>Epigallocatechin Gallate, and the Molecular Tweezer CLR01. ACS Chemical Neuroscience, 2012, 3,<br>451-458.                          | 3.5 | 109       |
| 23 | Role of Electrostatic Interactions in Amyloid β-Protein (Aβ) Oligomer Formation: A Discrete Molecular<br>Dynamics Study. Biophysical Journal, 2007, 92, 4064-4077.                                                                        | 0.5 | 108       |
| 24 | A Shortened Barnes Maze Protocol Reveals Memory Deficits at 4-Months of Age in the<br>Triple-Transgenic Mouse Model of Alzheimer's Disease. PLoS ONE, 2013, 8, e80355.                                                                    | 2.5 | 108       |
| 25 | A Label-Free Platform for Identification of Exosomes from Different Sources. ACS Sensors, 2019, 4, 488-497.                                                                                                                               | 7.8 | 102       |
| 26 | Photoaffinity Cross-linking Identifies Differences in the Interactions of an Agonist and an Antagonist<br>with the Parathyroid Hormone/Parathyroid Hormone-related Protein Receptor. Journal of Biological<br>Chemistry, 2000, 275, 9-17. | 3.4 | 101       |
| 27 | Structure – Function Relationships of Pre-Fibrillar Protein Assemblies in Alzheimers Disease and Related Disorders. Current Alzheimer Research, 2008, 5, 319-341.                                                                         | 1.4 | 92        |
| 28 | Structural Study of Metastable Amyloidogenic Protein Oligomers by Photoâ€Induced Crossâ€Linking of<br>Unmodified Proteins. Methods in Enzymology, 2006, 413, 217-236.                                                                     | 1.0 | 88        |
| 29 | Protection of primary neurons and mouse brain from Alzheimer's pathology by molecular tweezers.<br>Brain, 2012, 135, 3735-3748.                                                                                                           | 7.6 | 86        |
| 30 | Molecular Basis for Preventing α-Synuclein Aggregation by a Molecular Tweezer. Journal of Biological<br>Chemistry, 2014, 289, 10727-10737.                                                                                                | 3.4 | 85        |
| 31 | The Structure of Aβ42 C-Terminal Fragments Probed by a Combined Experimental and Theoretical Study.<br>Journal of Molecular Biology, 2009, 387, 492-501.                                                                                  | 4.2 | 84        |
| 32 | α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers<br>distinguishes Parkinson's disease from multiple system atrophy. Acta Neuropathologica, 2021, 142,<br>495-511.                             | 7.7 | 80        |
| 33 | Amino Acid Position-specific Contributions to Amyloid β-Protein Oligomerization. Journal of Biological<br>Chemistry, 2009, 284, 23580-23591.                                                                                              | 3.4 | 79        |
| 34 | Building Units for N-Backbone Cyclic Peptides. 3. Synthesis of Protected Nα-(݉-Aminoalkyl)amino Acids<br>and Nα-(݉-Carboxyalkyl)amino Acids. Journal of Organic Chemistry, 1997, 62, 411-416.                                             | 3.2 | 78        |
| 35 | Aβ(39–42) Modulates Aβ Oligomerization but Not Fibril Formation. Biochemistry, 2012, 51, 108-117.                                                                                                                                         | 2.5 | 72        |
| 36 | Photo-Induced Cross-Linking of Unmodified Proteins (PICUP) Applied to Amyloidogenic Peptides.<br>Journal of Visualized Experiments, 2009, , .                                                                                             | 0.3 | 71        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A molecular tweezer antagonizes seminal amyloids and HIV infection. ELife, 2015, 4, .                                                                                                                        | 6.0  | 71        |
| 38 | Amyloid β-Protein Assembly: The Effect of Molecular Tweezers CLRO1 and CLRO3. Journal of Physical Chemistry B, 2015, 119, 4831-4841.                                                                         | 2.6  | 69        |
| 39 | Modulating Selfâ€Assembly of Amyloidogenic Proteins as a Therapeutic Approach for Neurodegenerative<br>Diseases: Strategies and Mechanisms. ChemMedChem, 2012, 7, 359-374.                                   | 3.2  | 65        |
| 40 | Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish<br>Embryos. Environmental Health Perspectives, 2016, 124, 1766-1775.                                   | 6.0  | 64        |
| 41 | Rational Design of β-Sheet Ligands Against Aβ <sub>42</sub> -Induced Toxicity. Journal of the American<br>Chemical Society, 2011, 133, 4348-4358.                                                            | 13.7 | 61        |
| 42 | Dendrimeric Aβ1–15 is an effective immunogen in wildtype and APP-tg mice. Neurobiology of Aging, 2007,<br>28, 813-823.                                                                                       | 3.1  | 60        |
| 43 | Synthesis and Biological Activity of NK-1 Selective, N-Backbone Cyclic Analogs of the C-Terminal<br>Hexapeptide of Substance P. Journal of Medicinal Chemistry, 1996, 39, 3174-3178.                         | 6.4  | 59        |
| 44 | Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau<br>aggregation. Alzheimer's Research and Therapy, 2019, 11, 86.                                            | 6.2  | 59        |
| 45 | Effects of different amyloid β-protein analogues on synaptic function. Neurobiology of Aging, 2013, 34, 1032-1044.                                                                                           | 3.1  | 56        |
| 46 | Design of β-Amyloid Aggregation Inhibitors from a Predicted Structural Motif. Journal of Medicinal Chemistry, 2012, 55, 3002-3010.                                                                           | 6.4  | 53        |
| 47 | Mechanistic Investigation of the Inhibition of Aβ42 Assembly and Neurotoxicity by Aβ42 C-Terminal Fragments. Biochemistry, 2010, 49, 6358-6364.                                                              | 2.5  | 52        |
| 48 | RNA Aptamers Generated against Oligomeric Aβ40 Recognize Common Amyloid Aptatopes with Low<br>Specificity but High Sensitivity. PLoS ONE, 2009, 4, e7694.                                                    | 2.5  | 52        |
| 49 | Preparation of Aggregate-Free, Low Molecular Weight Amyloid-β for Assembly and Toxicity Assays. ,<br>2005, 299, 003-010.                                                                                     |      | 51        |
| 50 | Biophysical Characterization of Aβ42 C-Terminal Fragments: Inhibitors of Aβ42 Neurotoxicity.<br>Biochemistry, 2010, 49, 1259-1267.                                                                           | 2.5  | 49        |
| 51 | Inhibition of Huntingtin Exon-1 Aggregation by the Molecular Tweezer CLR01. Journal of the American<br>Chemical Society, 2017, 139, 5640-5643.                                                               | 13.7 | 49        |
| 52 | A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing α-Synuclein.<br>Neurotherapeutics, 2017, 14, 1107-1119.                                                                                | 4.4  | 49        |
| 53 | Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions<br>Play a Key Role in Their Inhibitory Activity?. Journal of Physical Chemistry B, 2016, 120, 1615-1623. | 2.6  | 47        |
| 54 | Structural Basis for Aβ1–42 Toxicity Inhibition by Aβ C-Terminal Fragments: Discrete Molecular Dynamics<br>Study. Journal of Molecular Biology, 2011, 410, 316-328.                                          | 4.2  | 46        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Induction of Methionine-Sulfoxide Reductases Protects Neurons from Amyloid β-Protein Insults in<br>Vitro and in Vivo. Biochemistry, 2011, 50, 10687-10697.                                                                                         | 2.5  | 45        |
| 56 | Molecular Tweezers Inhibit Islet Amyloid Polypeptide Assembly and Toxicity by a New Mechanism. ACS<br>Chemical Biology, 2015, 10, 1555-1569.                                                                                                       | 3.4  | 45        |
| 57 | Safety and pharmacological characterization of the molecular tweezer CLR01 – a broad-spectrum<br>inhibitor of amyloid proteins' toxicity. BMC Pharmacology & Toxicology, 2014, 15, 23.                                                             | 2.4  | 43        |
| 58 | Molecular Tweezers Targeting Transthyretin Amyloidosis. Neurotherapeutics, 2014, 11, 450-461.                                                                                                                                                      | 4.4  | 41        |
| 59 | Disrupting Self-Assembly and Toxicity of Amyloidogenic Protein Oligomers by " Molecular<br>Tweezers" - from the Test Tube to Animal Models. Current Pharmaceutical Design, 2014, 20,<br>2469-2483.                                                 | 1.9  | 40        |
| 60 | Despite its role in assembly, methionine 35 is not necessary for amyloid βâ€protein toxicity. Journal of<br>Neurochemistry, 2010, 113, 1252-1262.                                                                                                  | 3.9  | 39        |
| 61 | Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator. Journal of the American Society for Mass Spectrometry, 2019, 30, 16-23.                             | 2.8  | 39        |
| 62 | CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nature<br>Communications, 2020, 11, 4885.                                                                                                                 | 12.8 | 39        |
| 63 | Polyglutamine Repeat Length-Dependent Proteolysis of Huntingtin. Neurobiology of Disease, 2002, 11, 111-122.                                                                                                                                       | 4.4  | 38        |
| 64 | Zn2+-Aβ40 Complexes Form Metastable Quasi-spherical Oligomers That Are Cytotoxic to Cultured<br>Hippocampal Neurons. Journal of Biological Chemistry, 2012, 287, 20555-20564.                                                                      | 3.4  | 38        |
| 65 | Modulation of Amyloid β-Protein (Aβ) Assembly by Homologous C-Terminal Fragments as a Strategy for<br>Inhibiting Aβ Toxicity. ACS Chemical Neuroscience, 2016, 7, 845-856.                                                                         | 3.5  | 35        |
| 66 | C-Terminal Tetrapeptides Inhibit Aβ42-Induced Neurotoxicity Primarily through Specific Interaction at the N-Terminus of Aβ42. Journal of Medicinal Chemistry, 2011, 54, 8451-8460.                                                                 | 6.4  | 34        |
| 67 | Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro<br>Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chemical Biology, 2019, 14,<br>1363-1379.                                 | 3.4  | 34        |
| 68 | Building units for N-backbone cyclic peptides. Part 4.1 Synthesis of protected Nα-functionalized alkyl<br>amino acids by reductive alkylation of natural amino acids. Journal of the Chemical Society Perkin<br>Transactions 1, 1997, , 1501-1510. | 0.9  | 31        |
| 69 | The molecular tweezer CLR01 inhibits Ebola and Zika virus infection. Antiviral Research, 2018, 152, 26-35.                                                                                                                                         | 4.1  | 31        |
| 70 | Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. Journal of the<br>American Chemical Society, 2020, 142, 17024-17038.                                                                                                  | 13.7 | 31        |
| 71 | Surprising toxicity and assembly behaviour of amyloid β-protein oxidized to sulfone. Biochemical<br>Journal, 2011, 433, 323-332.                                                                                                                   | 3.7  | 30        |
| 72 | The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. Journal of Biological Chemistry, 2019, 294, 3501-3513.                                                 | 3.4  | 30        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Toxicity Inhibitors Protect Lipid Membranes from Disruption by Aβ42. ACS Chemical Neuroscience, 2015, 6, 1860-1869.                                                                                                          | 3.5 | 28        |
| 74 | Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Experimental<br>Neurology, 2016, 278, 105-115.                                                                                          | 4.1 | 28        |
| 75 | The Amyloid Inhibitor CLR01 Relieves Autophagy and Ameliorates Neuropathology in a Severe<br>Lysosomal Storage Disease. Molecular Therapy, 2020, 28, 1167-1176.                                                              | 8.2 | 28        |
| 76 | Mapping the Integrin αVβ3â^'Ligand Interface by Photoaffinity Cross-Linkingâ€. Biochemistry, 1999, 38,<br>3414-3420.                                                                                                         | 2.5 | 26        |
| 77 | Synthesis and biological activity of novel backboneâ€bicyclic Substanceâ€P analogs containing lactam and disulfide bridges. Chemical Biology and Drug Design, 1997, 49, 421-426.                                             | 1.1 | 26        |
| 78 | Role of Species-Specific Primary Structure Differences in AÎ <sup>2</sup> 42 Assembly and Neurotoxicity. ACS<br>Chemical Neuroscience, 2015, 6, 1941-1955.                                                                   | 3.5 | 26        |
| 79 | Preparation of pure populations of covalently stabilized amyloid β-protein oligomers of specific sizes.<br>Analytical Biochemistry, 2017, 518, 78-85.                                                                        | 2.4 | 26        |
| 80 | The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in<br>experimental multiple system atrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019,<br>1865, 165513. | 3.8 | 25        |
| 81 | Early diagnostics and therapeutics for Alzheimer's disease – how early can we get there?. Expert<br>Review of Neurotherapeutics, 2006, 6, 1293-1306.                                                                         | 2.8 | 24        |
| 82 | En route to early diagnosis of Alzheimer's disease – are we there yet?. Trends in Biotechnology, 2005, 23, 531-533.                                                                                                          | 9.3 | 23        |
| 83 | Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease.<br>Journal of Visualized Experiments, 2010, , .                                                                                     | 0.3 | 23        |
| 84 | Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018,<br>90, 74-82.                                                                                                               | 1.1 | 23        |
| 85 | Determination of Peptide Oligomerization State Using Rapid Photochemical Crosslinking. , 2005, 299, 011-018.                                                                                                                 |     | 22        |
| 86 | The Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity. Biochemistry, 2015, 54, 3729-3738.                                                          | 2.5 | 22        |
| 87 | Plasma Methionine Sulfoxide in Persons with Familial Alzheimer's Disease Mutations. Dementia and<br>Geriatric Cognitive Disorders, 2012, 33, 219-225.                                                                        | 1.5 | 21        |
| 88 | Ischemic axonal injury up-regulates MARK4 in cortical neurons and primes tau phosphorylation and aggregation. Acta Neuropathologica Communications, 2019, 7, 135.                                                            | 5.2 | 21        |
| 89 | Modulators of amyloid protein aggregation and toxicity: EGCG and CLR01. Translational Neuroscience, 2013, 4, 385-409.                                                                                                        | 1.4 | 20        |
| 90 | Investigation of Anti-SOD1 Antibodies Yields New Structural Insight into SOD1 Misfolding and Surprising Behavior of the Antibodies Themselves. ACS Chemical Biology, 2018, 13, 2794-2807.                                    | 3.4 | 20        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Preparation of Stable Amyloid β-Protein Oligomers of Defined Assembly Order. Methods in Molecular<br>Biology, 2012, 849, 23-31.                                                                                                      | 0.9 | 19        |
| 92  | Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light. Scientific Reports, 2017, 7, 44157.                                                                                                         | 3.3 | 18        |
| 93  | Molecular Lysine Tweezers Counteract Aberrant Protein Aggregation. Frontiers in Chemistry, 2019, 7,<br>657.                                                                                                                          | 3.6 | 17        |
| 94  | <scp>mTOR</scp> Inhibition with Sirolimus in Multiple System Atrophy: A Randomized, Doubleâ€Blind,<br>Placeboâ€Controlled Futility Trial and 1â€Year Biomarker Longitudinal Analysis. Movement Disorders,<br>2022, 37, 778-789.      | 3.9 | 16        |
| 95  | Inhibition of Mutant αB Crystallinâ€Induced Protein Aggregation by a Molecular Tweezer. Journal of the American Heart Association, 2017, 6, .                                                                                        | 3.7 | 15        |
| 96  | The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. Alzheimer's Research and Therapy, 2021, 13, 6.                                                                      | 6.2 | 15        |
| 97  | Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers. Cell<br>Chemical Biology, 2021, 28, 1310-1320.e5.                                                                                      | 5.2 | 15        |
| 98  | Application of Photochemical Cross-linking to the Study of Oligomerization of Amyloidogenic<br>Proteins. Methods in Molecular Biology, 2012, 849, 11-21.                                                                             | 0.9 | 14        |
| 99  | Transfer hydrogenation of diarylacetylenes by polymethylhydrosiloxane in the presence of the RhCl3-Aliquat 336 catalyst. Journal of Molecular Catalysis, 1991, 66, 313-319.                                                          | 1.2 | 13        |
| 100 | Different Amyloid-β Self-Assemblies Have Distinct Effects on Intracellular Tau Aggregation. Frontiers<br>in Molecular Neuroscience, 2019, 12, 268.                                                                                   | 2.9 | 13        |
| 101 | Using Molecular Tweezers to Remodel Abnormal Protein Self-Assembly and Inhibit the Toxicity of<br>Amyloidogenic Proteins. Methods in Molecular Biology, 2018, 1777, 369-386.                                                         | 0.9 | 12        |
| 102 | Threeâ€repeat and fourâ€repeat tau isoforms form different oligomers. Protein Science, 2022, 31, 613-627.                                                                                                                            | 7.6 | 12        |
| 103 | Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases.<br>Journal of Biological Chemistry, 2022, 298, 101478.                                                                              | 3.4 | 12        |
| 104 | Tranilast Binds to Al <sup>2</sup> Monomers and Promotes Al <sup>2</sup> Fibrillation. Biochemistry, 2013, 52, 3995-4002.                                                                                                            | 2.5 | 11        |
| 105 | Identification of a Contact Domain between Echistatin and the Integrin $\hat{I}\pm v\hat{I}^2$ 3 by Photoaffinity Cross-Linking. Biochemistry, 2001, 40, 15117-15126.                                                                | 2.5 | 10        |
| 106 | Backbone Cyclization of the C-terminal Part of Substance P. Part 1: The Important Role of the Sulphur<br>in Position 11. Journal of Peptide Science, 1996, 2, 261-269.                                                               | 1.4 | 9         |
| 107 | Assembly of Amyloid β-Protein Variants Containing Familial Alzheimer's Disease-Linked Amino Acid<br>Substitutions. , 2014, , 429-442.                                                                                                |     | 9         |
| 108 | Structureâ€activity relationship of the ring portion in backboneâ€cyclic Câ€terminal hexapeptide analogs of<br>substance P. NMR and molecular dynamics. International Journal of Peptide and Protein Research, 1996,<br>48, 569-578. | 0.1 | 8         |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A Twoâ€Step Strategy for Structure–Activity Relationship Studies of N <i>â€</i> Methylated Aβ42 Câ€Terminal Fragments as Aβ42 Toxicity Inhibitors. ChemMedChem, 2012, 7, 515-522.                                                              | 3.2 | 8         |
| 110 | New backbone cyclic substance P analogs. International Journal of Peptide Research and Therapeutics, 1995, 2, 121-124.                                                                                                                         | 0.1 | 7         |
| 111 | Ligandâ^'Integrin αVβ3 Interaction Determined by Photoaffinity Cross-Linking:  A Challenge to the<br>Prevailing Model. Biochemistry, 2000, 39, 11014-11023.                                                                                    | 2.5 | 7         |
| 112 | The recent failure of the PROMESA clinical trial for multiple system atrophy raises the question—are<br>polyphenols a viable therapeutic option against proteinopathies?. Annals of Translational Medicine, 2020, 8, 719-719.                  | 1.7 | 7         |
| 113 | Preparation of Pure Populations of Amyloid β-Protein Oligomers of Defined Size. Methods in Molecular<br>Biology, 2018, 1779, 3-12.                                                                                                             | 0.9 | 6         |
| 114 | Examination of SOD1 aggregation modulators and their effect on SOD1 enzymatic activity as a proxy for potential toxicity. FASEB Journal, 2020, 34, 11957-11969.                                                                                | 0.5 | 6         |
| 115 | Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes.<br>Communications Biology, 2021, 4, 1076.                                                                                                                 | 4.4 | 6         |
| 116 | Disease-modifying therapy for proteinopathies: Can the exception become the rule?. Progress in Molecular Biology and Translational Science, 2019, 168, 277-287.                                                                                | 1.7 | 5         |
| 117 | Synthesis of a bicyclic BPTI mimetic containing 4-thioproline replacing Cys38. International Journal of Peptide Research and Therapeutics, 1998, 5, 101-103.                                                                                   | 0.1 | 3         |
| 118 | Overview of Fibrillar and Oligomeric Assemblies of Amyloidogenic Proteins. , 2012, , 1-36.                                                                                                                                                     |     | 3         |
| 119 | Different Inhibitors of AÎ <sup>2</sup> 42-Induced Toxicity Have Distinct Metal-Ion Dependency. ACS Chemical Neuroscience, 2020, 11, 2243-2255.                                                                                                | 3.5 | 2         |
| 120 | Rapid Photochemical Cross-Linking — A New Tool for Studies of Metastable, Amyloidogenic Protein<br>Assemblies. ChemInform, 2004, 35, no.                                                                                                       | 0.0 | 1         |
| 121 | Towards Inhibition of Amyloid β-protein Oligomerization. , 2006, , 515-516.                                                                                                                                                                    |     | 1         |
| 122 | O2â€12â€01: Lysineâ€specific molecular tweezers protect neurons against betaâ€amyloidâ€induced<br>synaptotoxicity and lower betaâ€amyloid and pâ€tau load in a mouse model of Alzheimer's disease.<br>Alzheimer's and Dementia, 2012, 8, P259. | 0.8 | 1         |
| 123 | Exact modeling of cylindrical metal–dielectric multilayers beyond the effective medium approximation. Optics Letters, 2014, 39, 6517.                                                                                                          | 3.3 | 1         |
| 124 | On-chip ultraviolet holography for high-throughput nanoparticle and biomolecule detection. , 2018, ,                                                                                                                                           |     | 1         |
| 125 | Synthesis of a bicyclic BPTI mimetic containing 4-thioproline replacing Cys38. International Journal of Peptide Research and Therapeutics, 1998, 5, 101-103.                                                                                   | 0.1 | 0         |
| 126 | Computational Study of Assembly and Toxicity Inhibition of Amyloid Beta-Protein and Its Arctic<br>Mutant. Biophysical Journal, 2009, 96, 219a.                                                                                                 | 0.5 | 0         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Structural Basis for Amyloid β-Protein Toxicity Inhibition: A Multiscale Computational Study.<br>Biophysical Journal, 2011, 100, 390a.                                                                             | 0.5 | 0         |
| 128 | Counteracting Semen-mediated Enhancement of HIV Infection and Enveloped Virus Infection by a Lysine-specific Molecular Tweezer. AIDS Research and Human Retroviruses, 2014, 30, A263-A263.                         | 1.1 | 0         |
| 129 | F2â€06â€01: MAJOR DIFFERENCES BETWEEN THE SELFâ€ASSEMBLY, SEEDING BEHAVIOR, AND INTERACTION WI<br>MODULATORS OF HEPARINâ€INDUCED VERSUS INâ€VITRO PHOSPHORYLATED TAU. Alzheimer's and Dementia,<br>2019, 15, P524. |     | 0         |
| 130 | Can We Accelerate the Path towards Therapy for Amyloid-Related Diseases?. Journal of Gerontology & Geriatric Research, 2012, 01, .                                                                                 | 0.1 | 0         |
| 131 | On-chip Microscopy and Nano-particle Detection Using Ultraviolet Light. , 2017, , .                                                                                                                                |     | 0         |
| 132 | Abstract 2015: Exosomes secreted by highly migratory premalignant lung epithelial cells promote epithelial mesenchymal transition and migration. , 2018, , .                                                       |     | 0         |