E Matthew Morris

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/979261/e-matthew-morris-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47
papers1,881
citations23
h-index43
g-index56
ext. papers2,232
ext. citations4
avg, IF4.16
L-index

#	Paper	IF	Citations
47	Lack of VMP1 Impairs Hepatic Lipoprotein Secretion and Promotes Nonalcoholic Steatohepatitis Journal of Hepatology, 2022,	13.4	1
46	Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis. <i>Gene Expression</i> , 2021 , 20, 157-168	3.4	1
45	An Omega-3-rich Anti-inflammatory Diet Improved Widespread Allodynia and Worsened Metabolic Outcomes in Adult Mice Exposed to Neonatal Maternal Separation. <i>Neuroscience</i> , 2021 , 468, 53-67	3.9	1
44	Early life stress reduces voluntary exercise and its prevention of diet-induced obesity and metabolic dysfunction in mice. <i>Physiology and Behavior</i> , 2020 , 223, 113000	3.5	9
43	Difference in Housing Temperature-Induced Energy Expenditure Elicits Sex-Specific Diet-Induced Metabolic Adaptations in Mice. <i>Obesity</i> , 2020 , 28, 1922-1931	8	5
42	Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance. <i>Endocrinology</i> , 2019 , 160, 1179-1192	4.8	6
41	Sex modulates hepatic mitochondrial adaptations to high-fat diet and physical activity. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2019 , 317, E298-E311	6	15
40	eNOS deletion impairs mitochondrial quality control and exacerbates Western diet-induced NASH. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2019 , 317, E605-E616	6	11
39	Estradiol treatment and exercise improve hepatic mitochondrial outcomes in mice following ovariectomy. <i>FASEB Journal</i> , 2019 , 33, 699.5	0.9	
38	Hepatic mitochondrial adaptations to physical activity: impact of sexual dimorphism, PGC1[and BNIP3-mediated mitophagy. <i>Journal of Physiology</i> , 2018 , 596, 6157-6171	3.9	14
37	Heat shock protein 72 regulates hepatic lipid accumulation. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2018 , 315, R696-R707	3.2	19
36	Fibroblast growth factor 21 increases hepatic oxidative capacity but not physical activity or energy expenditure in hepatic peroxisome proliferator-activated receptor Leoactivator-1Edeficient mice. <i>Experimental Physiology</i> , 2018 , 103, 408-418	2.4	7
35	Intrinsic (Genetic) Aerobic Fitness Impacts Susceptibility for Metabolic Disease. <i>Exercise and Sport Sciences Reviews</i> , 2017 , 45, 7-15	6.7	3
34	Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis. <i>Journal of Physiology</i> , 2017 , 595, 4909-4926	3.9	21
33	Deficiency in the Heat Stress Response Could Underlie Susceptibility to Metabolic Disease. <i>Diabetes</i> , 2016 , 65, 3341-3351	0.9	21
32	Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2016 , 311, E749-E760	6	18
31	The presence of the ovary prevents hepatic mitochondrial oxidative stress in young and aged female mice through glutathione peroxidase 1. <i>Experimental Gerontology</i> , 2016 , 73, 14-22	4.5	11

(2012-2016)

30	Aerobic exercise training in the treatment of non-alcoholic fatty liver disease related fibrosis. Journal of Physiology, 2016 , 594, 5271-84	3.9	31	
29	Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 310, G832-43	5.1	15	
28	Increased aerobic capacity reduces susceptibility to acute high-fat diet-induced weight gain. <i>Obesity</i> , 2016 , 24, 1929-37	8	8	
27	Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2015 , 308, R530-42	3.2	38	
26	Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats. <i>Applied Physiology, Nutrition and Metabolism</i> , 2015 , 40, 1038-47	3	27	
25	High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies. <i>Lipids</i> , 2015 , 50, 997-1008	1.6	43	
24	Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. <i>Medicine and Science in Sports and Exercise</i> , 2015 , 47, 556-67	1.2	50	
23	Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2014 , 307, E355-64	6	43	
22	Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2014 , 306, E300-10	6	53	
21	Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats. <i>Applied Physiology, Nutrition and Metabolism</i> , 2014 , 39, 472-9	3	9	
20	Impact of various exercise modalities on hepatic mitochondrial function. <i>Medicine and Science in Sports and Exercise</i> , 2014 , 46, 1089-97	1.2	31	
19	The role of angiotensin II in nonalcoholic steatohepatitis. <i>Molecular and Cellular Endocrinology</i> , 2013 , 378, 29-40	4.4	44	
18	Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1 overexpression. <i>American Journal of Physiology - Renal Physiology</i> , 2013 , 305, G868-80	5.1	29	
17	Selective hepatic insulin resistance in a murine model heterozygous for a mitochondrial trifunctional protein defect. <i>Hepatology</i> , 2013 , 57, 2213-23	11.2	41	
16	High-fat diet alters serum fatty acid profiles in obesity prone rats: implications for in-vitro studies. <i>FASEB Journal</i> , 2013 , 27, 373.7	0.9		
15	Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats. <i>Microcirculation</i> , 2012 , 19, 729-38	2.9	26	
14	Exercise and Omega-3 Polyunsaturated Fatty Acid Supplementation for the Treatment of Hepatic Steatosis in Hyperphagic OLETF Rats. <i>Journal of Nutrition and Metabolism</i> , 2012 , 2012, 268680	2.7	20	
13	PGC-1 Deverexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. <i>American Journal of Physiology - Renal Physiology</i> , 2012 , 303, G979-92	5.1	93	

12	Voluntary wheel-running improves metabolic flexibility in the liver. FASEB Journal, 2012, 26, lb719	0.9	1
11	Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. <i>American Journal of Physiology - Renal Physiology</i> , 2011 , 300, G874-83	5.1	103
10	Mitochondria and redox signaling in steatohepatitis. Antioxidants and Redox Signaling, 2011, 15, 485-50	14 8.4	46
9	Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2010 , 298, E1179-87	6	42
8	Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. <i>Journal of Hepatology</i> , 2010 , 52, 727-36	13.4	317
7	Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity. <i>Applied Physiology, Nutrition and Metabolism</i> , 2010 , 35, 151-62	3	34
6	Low aerobic capacity and high-fat diet contribute to oxidative stress and IRS-1 degradation in the kidney. <i>American Journal of Nephrology</i> , 2009 , 30, 112-9	4.6	17
5	Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. <i>Journal of Physiology</i> , 2009 , 587, 1805-16	3.9	120
4	Angiotensin II-induced non-alcoholic fatty liver disease is mediated by oxidative stress in transgenic TG(mRen2)27(Ren2) rats. <i>Journal of Hepatology</i> , 2008 , 49, 417-28	13.4	77
3	Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. <i>Endocrinology</i> , 2007 , 148, 3773-80	4.8	88
2	Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. <i>American Journal of Nephrology</i> , 2007 , 27, 15-23	4.6	57
1	Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells.	5.4	214