
Anna Warzybok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9791887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inference of the distortion component of hearing impairment from speech recognition by predicting the effect of the attenuation component. International Journal of Audiology, 2022, 61, 205-219.	1.7	4
2	Sensitivity and specificity of automatic audiological classification using expert-labelled audiological data and Common Audiological Functional Parameters. International Journal of Audiology, 2021, 60, 16-26.	1.7	5
3	Evaluation of Italian Simplified Matrix Test for Speech-Recognition Measurements in Noise. Audiology Research, 2021, 11, 73-88.	1.8	11
4	Contribution of Low-Level Acoustic and Higher-Level Lexical-Semantic Cues to Speech Recognition in Noise and Reverberation. Frontiers in Built Environment, 2021, 7, .	2.3	3
5	Effect of reverberation and noise type on speech intelligibility in real complex acoustic scenarios. Building and Environment, 2021, 204, 108137.	6.9	18
6	Simulations with FADE of the effect of impaired hearing on speech recognition performance cast doubt on the role of spectral resolution. Hearing Research, 2020, 395, 107995.	2.0	8
7	Individual Aided Speech-Recognition Performance and Predictions of Benefit for Listeners With Impaired Hearing Employing FADE. Trends in Hearing, 2020, 24, 233121652093892.	1.3	18
8	Clinical validation of the Russian Matrix test – effect of hearing loss, age, and noise level. International Journal of Audiology, 2020, 59, 930-940.	1.7	5
9	Common Audiological Functional Parameters (CAFPAs) for single patient cases: deriving statistical models from an expert-labelled data set. International Journal of Audiology, 2020, 59, 534-547.	1.7	7
10	Prediction of hearing aid benefit with the use of the matrix sentence test. AIP Conference Proceedings, 2019, , .	0.4	0
11	Measurement and Prediction of Binaural-Temporal Integration of Speech Reflections. Trends in Hearing, 2019, 23, 233121651985426.	1.3	4
12	Common Audiological Functional Parameters (CAFPAs): statistical and compact representation of rehabilitative audiological classification based on expert knowledge. International Journal of Audiology, 2019, 58, 231-245.	1.7	9
13	Objective Prediction of Hearing Aid Benefit Across Listener Groups Using Machine Learning: Speech Recognition Performance With Binaural Noise-Reduction Algorithms. Trends in Hearing, 2018, 22, 233121651876895.	1.3	23
14	Construction and evaluation of the Mandarin Chinese matrix (CMNmatrix) sentence test for the assessment of speech recognition in noise. International Journal of Audiology, 2018, 57, 838-850.	1.7	23
15	Age-Related Differences in Lexical Access Relate to Speech Recognition in Noise. Frontiers in Psychology, 2016, 7, 990.	2.1	35
16	A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception. Journal of the Acoustical Society of America, 2016, 139, 2708-2722.	1.1	30
17	Sentence Recognition Prediction for Hearing-impaired Listeners in Stationary and Fluctuation Noise With FADE. Trends in Hearing, 2016, 20, 233121651665579.	1.3	26
18	Development and Evaluation of the Russian Digit Triplet Test. Acta Acustica United With Acustica, 2016, 102, 714-724.	0.8	5

ANNA WARZYBOK

#	ARTICLE	IF	CITATIONS
19	Comparing Binaural Pre-processing Strategies III. Trends in Hearing, 2015, 19, 233121651561860.	1.3	23
20	An Italian matrix sentence test for the evaluation of speech intelligibility in noise. International Journal of Audiology, 2015, 54, 44-50.	1.7	60
21	Matrix sentence intelligibility prediction using an automatic speech recognition system. International Journal of Audiology, 2015, 54, 100-107.	1.7	44
22	How much does language proficiency by non-native listeners influence speech audiometric tests in noise?. International Journal of Audiology, 2015, 54, 88-99.	1.7	28
23	The multilingual matrix test: Principles, applications, and comparison across languages: A review. International Journal of Audiology, 2015, 54, 3-16.	1.7	202
24	Development of the Russian matrix sentence test. International Journal of Audiology, 2015, 54, 35-43.	1.7	36
25	A study on speech quality and speech intelligibility measures for quality assessment of single-channel dereverberation algorithms. , 2014, , .		16
26	Subjective speech quality and speech intelligibility evaluation of single-channel dereverberation algorithms. , 2014, , .		22
27	Modeling the effects of a single reflection on binaural speech intelligibility. Journal of the Acoustical Society of America, 2014, 135, 1556-1567.	1.1	25
28	Effects of spatial and temporal integration of a single early reflection on speech intelligibility. Journal of the Acoustical Society of America, 2013, 133, 269-282.	1.1	48
29	Speech-in-Noise Tests for Multilingual Hearing Screening and Diagnostics1. American Journal of Audiology, 2013, 22, 175-178.	1.2	57
30	Polish sentence matrix test for speech intelligibility measurement in noise. International Journal of Audiology, 2010, 49, 444-454.	1.7	63
31	Microscopic Multilingual Matrix Test Predictions Using an ASR-Based Speech Recognition Model. , 0, , .		6