Tsonyo Slavov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9790009/publications.pdf Version: 2024-02-01

TSONYO SLAVOV

#	Article	IF	CITATIONS
1	PID Controller Tuning based on Metaheuristic Algorithms for Bioprocess Control. Biotechnology and Biotechnological Equipment, 2012, 26, 3267-3277.	1.3	24
2	μ-Synthesis and Hardware-in-the-loop Simulation of Miniature Helicopter Control System. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 76, 315-351.	3.4	20
3	Population-Based vs. Single Point Search Meta-Heuristics for a PID Controller Tuning. Advances in Computational Intelligence and Robotics Book Series, 2014, , 200-233.	0.4	12
4	Fed-Batch Cultivation Control Based on Genetic Algorithm PID Controller Tuning. Lecture Notes in Computer Science, 2011, , 289-296.	1.3	7
5	Advanced Embedded Control of Electrohydraulic Power Steering System. Cybernetics and Information Technologies, 2020, 20, 105-121.	1.1	7
6	H-infinity Control of an Electrohydraulic Power Steering System. , 2018, , .		6
7	Simo System Identification of Transfer Function Model for Electrohydraulic Power Steering. , 2019, , .		6
8	Model Predictive Control Design for Electrohydraulic Power Steering Application. , 2020, , .		4
9	Robustness Analysis of an Electrohydraulic Steering Control System Based on the Estimated Uncertainty Model. Information (Switzerland), 2021, 12, 512.	2.9	4
10	Identification of electro-hydraulic load-sensing servo system. , 2021, , .		3
11	A New Hybrid GA-FA Tuning of PID Controller for Glucose Concentration Control. Studies in Computational Intelligence, 2013, , 155-168.	0.9	3
12	Design of h-infinity tracking controller for application in autonomous steering of mobile machines. , 2020, , .		3
13	Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model. Cybernetics and Information Technologies, 2012, 12, 13-33.	1.1	2
14	Optimal three-loop cascade PI-P-PI controller for electro-hydraulic power steering system. IOP Conference Series: Materials Science and Engineering, 2019, 664, 012011.	0.6	2
15	Embedded Walking Algorithm for Biped Humanoid Robot with 17 Degrees-of-Freedom. IOP Conference Series: Materials Science and Engineering, 2019, 618, 012004.	0.6	2
16	Robust μ-Controller for Hydraulic Spool Valve, Pilot Operated with Switching Micro Valves. Energies, 2021, 14, 4817.	3.1	2
17	Comparison of Model Predictive Control (MPC) and Linear-Quadratic Gaussian (LQG) Algorithm for Electrohydraulic Steering Control System. E3S Web of Conferences, 2020, 207, 04001.	0.5	2

Robust Mu-Controller for Electro-Hydraulic Steering System. , 2019, , .

TSONYO SLAVOV

#	Article	IF	CITATIONS
19	Comparison of Robust Stability for Electrohydraulic Steering Control System Based on LQG and H-infinity Controller. , 2019, , .		1
20	Reference Tracking LQG Control of Electrohydraulic Servo System for Mobile Machines. , 2020, , .		1
21	Comparison between Model Predictive (MPC) and Model Reference Adaptive Controllers (MRAC) for Electrohydraulic Steering System Implemented as Real-Time Simulink® Program. IOP Conference Series: Materials Science and Engineering, 2020, 1002, 012034.	0.6	1
22	GA-tuning of Multivariable PID Controller for Electrohydraulic Load-Sensing Servo System. E3S Web of Conferences, 2021, 327, 04001.	0.5	1
23	Robustness analysis of GA-PID and H _{â^ž} , Embedded Control for Load-Sensing Electro-hydraulic Servo System. , 2022, , .		1
24	Robust Stability of Electro-Hydraulic Power Steering System with H-infinity Controller. , 2019, , .		0
25	Embedded Robust Control of Multivariable Plants. IFAC-PapersOnLine, 2019, 52, 4-9.	0.9	0
26	Real-Time LQG Control Strategies for Electrohydraulic Steering of Mobile Machines. , 2020, , .		0
27	Design of the Hâ^ž regulator for the control of glucose concentration in patients with first type diabetes. IOP Conference Series: Materials Science and Engineering, 2020, 878, 012003.	0.6	0
28	Robust Stability and Performance Investigation of Electrohydraulic Steering Control System. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 386-400.	0.3	0
29	Hardware-in-the-loop simulation on linear-quadratic controller for stabilization of a humanoid robot during walking. , 2021, , .		0
30	Robust Position Control for Two Wheels Mobile Robotic System. International Review of Automatic Control, 2015, 8, 267.	0.3	0
31	LABORATORY SETUP FOR INVESTIGATION OF CONTROL SYSTEM FOR ELECTROHYDRAULIC STEERING UNITS. Izvestiâ Na VisÅ¡iâ MaÅ¡inno-elektrotehniÄeski Institut Lenin, 2020, 70, .	0.3	Ο