Chunlei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9789229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced mixing state of black carbon with nitrate in single particles during haze periods in Zhengzhou, China. Journal of Environmental Sciences, 2022, 111, 185-196.	6.1	4
2	Real-time chemical characterization of single ambient particles at a port city in Chinese domestic emission control area — Impacts of ship emissions on urban air quality. Science of the Total Environment, 2022, 819, 153117.	8.0	15
3	The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. Atmospheric Chemistry and Physics, 2022, 22, 4539-4556.	4.9	27
4	Insights into the different mixing states and formation processes of amine-containing single particles in Guangzhou, China. Science of the Total Environment, 2022, 846, 157440.	8.0	4
5	Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. Sensors and Actuators B: Chemical, 2021, 327, 128897.	7.8	36
6	Single particle diversity and mixing state of carbonaceous aerosols in Guangzhou, China. Science of the Total Environment, 2021, 754, 142182.	8.0	14
7	Summertime atmospheric dicarboxylic acids and related SOA in the background region of Yangtze River Delta, China: Implications for heterogeneous reaction of oxalic acid with sea salts. Science of the Total Environment, 2021, 757, 143741.	8.0	15
8	The enhanced mixing states of oxalate with metals in single particles in Guangzhou, China. Science of the Total Environment, 2021, 783, 146962.	8.0	10
9	Primary emissions and secondary production of organic aerosols from heated animal fats. Science of the Total Environment, 2021, 794, 148638.	8.0	2
10	Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China. Science of the Total Environment, 2021, 800, 149422.	8.0	12
11	Diverse mixing states of amine-containing single particles in Nanjing, China. Atmospheric Chemistry and Physics, 2021, 21, 17953-17967.	4.9	9
12	Characteristics and source apportionment of ambient single particles in Tianjin, China: The close association between oxalic acid and biomass burning. Atmospheric Research, 2020, 237, 104843.	4.1	8
13	Source-oriented characterization of single particles from in-port ship emissions in Guangzhou, China. Science of the Total Environment, 2020, 724, 138179.	8.0	11
14	Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou. Atmospheric Chemistry and Physics, 2020, 20, 2445-2470.	4.9	38
15	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	4.9	97
16	Real time analysis of lead-containing atmospheric particles in Guangzhou during wintertime using single particle aerosol mass spectrometry. Ecotoxicology and Environmental Safety, 2019, 168, 53-63.	6.0	12
17	Characteristics and mixing state of amine-containing particles at a rural site in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 2018, 18, 9147-9159.	4.9	31
18	Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid. Atmospheric Chemistry and Physics, 2017, 17, 9519-9533.	4.9	36

CHUNLEI CHENG

#	Article	IF	CITATIONS
19	Identification of chemical compositions and sources of atmospheric aerosols in Xi'an, inland China during two types of haze events. Science of the Total Environment, 2016, 566-567, 230-237.	8.0	40
20	Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13630-13635.	7.1	1,044
21	Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface. Atmospheric Environment, 2015, 113, 169-176.	4.1	46
22	Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China. Atmospheric Research, 2015, 161-162, 134-142.	4.1	47
23	Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China: Implications for sources and formation mechanisms. Science of the Total Environment, 2014, 493, 1088-1097.	8.0	47
24	Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate. Atmospheric Chemistry and Physics, 2014, 14, 11571-11585.	4.9	49
25	Atmospheric oxalic acid and related secondary organic aerosols inÂQinghai Lake, a continental background site in Tibet Plateau. Atmospheric Environment, 2013, 79, 582-589.	4.1	49
26	Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods. Atmospheric Environment, 2013, 81, 443-449.	4.1	70
27	Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 819-835.	4.9	118
28	Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009 – Part 2: Impact of dust storm on organic aerosol composition and size distribution. Atmospheric Chemistry and Physics, 2012, 12, 4065-4080.	4.9	36
29	Molecular Distribution and Stable Carbon Isotopic Composition of Dicarboxylic Acids, Ketocarboxylic Acids, and α-Dicarbonyls in Size-Resolved Atmospheric Particles From Xi'an City, China. Environmental Science & Technology, 2012, 46, 4783-4791.	10.0	118
30	Airborne particulate organics at the summit (2060m, a.s.l.) of Mt. Hua in central China during winter: Implications for biofuel and coal combustion. Atmospheric Research, 2012, 106, 108-119.	4.1	27
31	Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009 – Part 1: EC, OC and inorganic ions. Atmospheric Chemistry and Physics, 2011, 11, 4221-4235.	4.9	53
32	Chemical composition and size distribution of wintertime aerosols in the atmosphere of Mt. Hua in central China. Atmospheric Environment, 2011, 45, 1251-1258.	4.1	48