Victor Sans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978868/publications.pdf

Version: 2024-02-01

		147801	149698
60	3,182	31	56
papers	citations	h-index	g-index
69	69	69	3789
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2388-2396.	6.7	6
2	Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces. Inorganic Chemistry Frontiers, 2022, 9, 1777-1784.	6.0	1
3	Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors. Green Chemistry, 2022, 24, 3300-3308.	9.0	12
4	Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2021, 3, 200-208.	4.4	30
5	Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids. Nature Communications, 2021, 12, 231.	12.8	54
6	Continuousâ€Flow Synthesis of Orange Emitting Sn(II)â€Doped CsBr Materials. Advanced Optical Materials, 2021, 9, 2101024.	7.3	5
7	Decoupling manufacturing from application in additive manufactured antimicrobial materials. Biomaterials Science, 2021, 9, 5397-5406.	5.4	13
8	Flow Chemistry – Applications. , 2021, , .		4
9	Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticlesâ€"The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Applied Catalysis B: Environmental, 2020, 260, 118110.	20.2	94
10	Investigating the impact of copper leaching on combustion characteristics and particulate emissions in HPCR diesel engines. Fuel, 2020, 263, 116719.	6.4	11
11	Recent Developments in the Modelling of Heterogeneous Catalysts for CO ₂ Conversion to Chemicals. ChemCatChem, 2020, 12, 1802-1825.	3.7	55
12	Redoxâ€Active Hybrid Polyoxometalateâ€Stabilised Gold Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14331-14335.	13.8	25
13	Emerging trends in flow chemistry enabled by 3D printing: Robust reactors, biocatalysis and electrochemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100367.	5.9	27
14	Catalyst design for highly efficient carbon dioxide hydrogenation to formic acid under buffering conditions. Journal of Catalysis, 2020, 385, 1-9.	6.2	40
15	Redoxâ€Active Hybrid Polyoxometalateâ€Stabilised Gold Nanoparticles. Angewandte Chemie, 2020, 132, 14437-14441.	2.0	6
16	Effects of chain length on the size, stability, and electronic structure of redox-active organic–inorganic hybrid polyoxometalate micelles. Molecular Systems Design and Engineering, 2019, 4, 995-999.	3.4	16
17	Continuous-flow crystallisation in 3D-printed compact devices. Reaction Chemistry and Engineering, 2019, 4, 1682-1688.	3.7	12
18	State-of-the-art and limitations in the life cycle assessment of ionic liquids. Journal of Cleaner Production, 2019, 217, 844-858.	9.3	55

#	Article	IF	Citations
19	Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature lonic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11691-11699.	6.7	21
20	An Oxalateâ€Bridged Binuclear Iron(III) Ionic Liquid for the Highly Efficient Glycolysis of Polyethylene Terephthalate under Microwave Irradiation. ChemPlusChem, 2019, 84, 786-793.	2.8	31
21	On the real catalytically active species for CO2 fixation into cyclic carbonates under near ambient conditions: Dissociation equilibrium of [BMIm][Fe(NO)2Cl2] dependant on reaction temperature. Applied Catalysis B: Environmental, 2019, 245, 240-250.	20.2	55
22	Environmental performance of 3D-Printing polymerisable ionic liquids. Journal of Cleaner Production, 2019, 214, 29-40.	9.3	24
23	Investigation of pressure drop in 3D replicated open-cell foams: Coupling CFD with experimental data on additively manufactured foams. Chemical Engineering Journal, 2019, 377, 120123.	12.7	67
24	Additively Manufactured Advanced Flow Reactors for Enhanced Heat and Mass Transfer. RSC Green Chemistry, 2019, , 416-439.	0.1	1
25	Tunable Ionic Control of Polymeric Films for Inkjet Based 3D Printing. ACS Sustainable Chemistry and Engineering, 2018, 6, 3984-3991.	6.7	27
26	Selective CO ₂ Hydrogenation to Formic Acid with Multifunctional Ionic Liquids. ACS Catalysis, 2018, 8, 1628-1634.	11.2	132
27	3Dâ€Printable Photochromic Molecular Materials for Reversible Information Storage. Advanced Materials, 2018, 30, e1800159.	21.0	75
28	Photochromic Materials: 3Dâ€Printable Photochromic Molecular Materials for Reversible Information Storage (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870193.	21.0	2
29	Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. Reaction Chemistry and Engineering, 2017, 2, 129-136.	3.7	56
30	Redox-active organic–inorganic hybrid polyoxometalate micelles. Journal of Materials Chemistry A, 2017, 5, 11577-11581.	10.3	41
31	Coding the Assembly of Polyoxotungstates with a Programmable Reaction System. Inorganic Chemistry, 2017, 56, 5089-5095.	4.0	9
32	An autonomous organic reaction search engine for chemical reactivity. Nature Communications, 2017, 8, 15733.	12.8	66
33	Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chemistry, 2017, 19, 5345-5349.	9.0	63
34	A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides. Inorganic Chemistry, 2017, 56, 12169-12177.	4.0	38
35	Orbital Engineering: Photoactivation of an Organofunctionalized Polyoxotungstate. Chemistry - A European Journal, 2017, 23, 47-50.	3.3	35
36	Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chemical Society Reviews, 2016, 45, 2032-2043.	38.1	179

#	Article	IF	Citations
37	Pd/C catalysts based on synthetic carbons with bi- and tri-modal pore-size distribution: applications in flow chemistry. Catalysis Science and Technology, 2016, 6, 2387-2395.	4.1	10
38	A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chemical Science, 2015, 6, 1258-1264.	7.4	209
39	Non-equilibrium dynamic control of gold nanoparticle and hyper-branched nanogold assemblies. Chemical Science, 2014, 5, 1153.	7.4	19
40	Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein Journal of Nanotechnology, 2013, 4, 285-291.	2.8	67
41	3D-printed devices for continuous-flow organic chemistry. Beilstein Journal of Organic Chemistry, 2013, 9, 951-959.	2.2	147
42	Tuning the Catalytic Efficiency of Palladium Supported Complexes (Pdâ€NHCâ€SILLPs): The Cooperative Effect of the Ionic Liquidâ€Like Groups. Macromolecular Symposia, 2012, 317-318, 259-266.	0.7	6
43	A flow-system array for the discovery and scale up of inorganic clusters. Nature Chemistry, 2012, 4, 1037-1043.	13.6	63
44	Assembly of a Gigantic Polyoxometalate Cluster {W ₂₀₀ Co ₈ O ₆₆₀ } in a Networked Reactor System. Angewandte Chemie - International Edition, 2012, 51, 12759-12762.	13.8	85
45	Polymer-supported Pd–NHC complexes: Strategies for the development of multifunctional systems. Catalysis Today, 2012, 196, 137-147.	4.4	31
46	Tandem transformation of glycerol to esters. Journal of Biotechnology, 2012, 162, 390-397.	3.8	2
47	Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors. RSC Advances, 2012, 2, 8721.	3.6	25
48	Configurable 3D-Printed millifluidic and microfluidic †lab on a chip' reactionware devices. Lab on A Chip, 2012, 12, 3267.	6.0	434
49	Stereoselective Chemoenzymatic Synthesis of Enantiopure 2-($1 < i > H < /i > -imidazol-yl$)cycloalkanols under Continuous Flow Conditions. ACS Catalysis, 2012, 2, 1976-1983.	11.2	28
50	Facile Stoichiometric Reductions in Flow: An Example of Artemisinin. Organic Process Research and Development, 2012, 16, 1039-1042.	2.7	37
51	SE(R)RS devices fabricated by a laser electrodispersion method. Analyst, The, 2011, 136, 3295.	3.5	8
52	Polymerâ€Supported Ionicâ€Liquidâ€Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices. Chemistry - A European Journal, 2011, 17, 1894-1906.	3.3	83
53	Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the nature of the support. Journal of Catalysis, 2010, 269, 150-160.	6.2	107
54	Polymer Cocktail: A Multitask Supported Ionic Liquidâ€Like Species to Facilitate Multiple and Consecutive CC Coupling Reactions. Advanced Synthesis and Catalysis, 2010, 352, 3013-3021.	4.3	50

#	ARTICLE	IF	CITATION
55	Development of efficient processes under flow conditions based on catalysts immobilized onto monolithic supported ionic liquid-like phases. Pure and Applied Chemistry, 2009, 81, 1991-2000.	1.9	12
56	Supported N-heterocyclic carbene rhodium complexes as highly selective hydroformylation catalysts. Journal of Molecular Catalysis A, 2009, 309, 131-136.	4.8	32
57	Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 2008, 10, 401.	9.0	83
58	Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, 2006, , 3095.	4.1	88
59	Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Letters, 2006, 47, 2311-2314.	1.4	72
60	PdCl2(P(OPh)3)2 Catalyzed Coupling and Carbonylative Coupling of Phenylacetylenes with Aryl Iodides in Organic Solvents and in Ionic Liquids. Catalysis Letters, 2006, 109, 37-41.	2.6	61