Victor Sans

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/978868/publications.pdf
Version: 2024-02-01

1	Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2388-2396.	6.7	6
2	Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces. Inorganic Chemistry Frontiers, 2022, 9, 1777-1784.	6.0	1
3	Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors. Green Chemistry, 2022, 24, 3300-3308.	9.0	12
4	Gelâ€"Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2021, 3, 200-208.	4.4	30
5	Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids. Nature Communications, 2021, 12, 231.	12.8	54
6	Continuousâ $€ \neq 1$ low Synthesis of Orange Emitting $\operatorname{Sn}(I I)$ â€Đoped CsBr Materials. Advanced Optical Materials, 2021, 9, 2101024.	7.3	5
7	Decoupling manufacturing from application in additive manufactured antimicrobial materials. Biomaterials Science, 2021, 9, 5397-5406.	5.4	13

8 Flow Chemistry â€" Applications. , 2021, , . 4
Paramagnetic ionic liquid-coated $\mathrm{SiO} 2 @ F e 3 \mathrm{O} 4$ nanoparticlesâ€"The next generation of magnetically
recoverable nanocatalysts applied in the glycolysis of PET. Applied Catalysis B: Environmental, 2020,
260,118110 .
Investigating the impact of copper leaching on combustion characteristics and particulate emissions
in HPCR diesel engines. Fuel, 2020, 263, 116719.
11 Recent Developments in the Modelling of Heterogeneous Catalysts for $\mathrm{CO}<$ sub $>2</$ sub $>$ Conversion
to Chemicals. ChemCatChem, 2020, 12, 1802-1825.
$3.7 \quad 55$

Redoxâ€Active Hybrid Polyoxometalateâ€ $£$ tabilised Gold Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14331-14335.

Catalyst design for highly efficient carbon dioxide hydrogenation to formic acid under buffering

Effects of chain length on the size, stability, and electronic structure of redox-active

19 Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature
lonic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 11691-11699.

An Oxalateâ€Bridged Binuclear Iron(III) Ionic Liquid for the Highly Efficient Clycolysis of Polyethylene Terephthalate under Microwave Irradiation. ChemPlusChem, 2019, 84, 786-793.

On the real catalytically active species for CO 2 fixation into cyclic carbonates under near ambient
21 conditions: Dissociation equilibrium of [BMIm][Fe(NO)2Cl2] dependant on reaction temperature.
$20.2 \quad 55$
Applied Catalysis B: Environmental, 2019, 245, 240-250.
22 Environmental performance of 3D-Printing polymerisable ionic liquids. Journal of Cleaner Production, 2019, 214, 29-40.
9.3

Investigation of pressure drop in 3D replicated open-cell foams: Coupling CFD with experimental data
$23 \quad \begin{aligned} & \text { Investigation of pressure drop in 3D replicated open-cell foams: Coupling CFD with exp } \\ & \text { on additively manufactured foams. Chemical Engineering Journal, 2019, 377, 120123. }\end{aligned}$
$12.7 \quad 67$

Additively Manufactured Advanced Flow Reactors for Enhanced Heat and Mass Transfer. RSC Green
Chemistry, 2019, , 416-439.
$0.1 \quad 1$

25 Tunable lonic Control of Polymeric Films for Inkjet Based 3D Printing. ACS Sustainable Chemistry and
Engineering, 2018, 6, 3984-3991.
$6.7 \quad 27$

Selective CO ₂ Hydrogenation to Formic Acid with Multifunctional Ionic Liquids. ACS Catalysis, 2018, 8, 1628-1634.
11.2

132

$$
\begin{aligned}
& \text { 3Dâ€Printable Photochromic Molecular Materials for Reversible Information Storage. Advanced } \\
& \text { Materials, 2018, 30, e1800159. } \\
& 28 \quad \begin{array}{l}
\text { Photochromic Materials: 3Dâ€Printable Photochromic Molecular Materials for Reversible Information } \\
\text { Storage (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870193. }
\end{array} \\
& 29 \quad \begin{array}{l}
\text { Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver } \\
\text { nanoparticles. Reaction Chemistry and Engineering, 2017, 2, 129-136. }
\end{array}
\end{aligned}
$$

2

Redox-active organicâ€"inorganic hybrid polyoxometalate micelles. Journal of Materials Chemistry A,
$30 \quad$ 2017, 5, 11577-11581.
10.3

41

Coding the Assembly of Polyoxotungstates with a Programmable Reaction System. Inorganic
4.0

9
Coding the Assembly of Polyoxotu
Chemistry, 2017, 56, 5089-5095.

An autonomous organic reaction search engine for chemical reactivity. Nature Communications, 2017,
8, 15733.
12.8

66

Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chemistry, 2017,
9.0

63
19, 5345-5349.

A Simple Approach to the Visible-Light Photoactivation of Molecular Metal Oxides. Inorganic
Chemistry, 2017, 56, 12169-12177.

[^0]3.3

35
41 3D-printed devices for continuous-flow organic chemistry. Beilstein Journal of Organic Chemistry,
$2013,9,951-959$.
43 A flow-system array for the discovery and scale up of inorganic clusters. Nature Chemistry, 2012, 4, 1037-1043.

47	Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors. RSC Advances, 2012, 2, 8721.	3.6	25
48	Configurable 3D-Printed millifluidic and microfluidic â $€^{\sim}$ lab on a chipâ $€^{\text {TM }}$ reactionware devices. Lab on A Chip, 2012, 12, 3267.	6.0	434
49	Stereoselective Chemoenzymatic Synthesis of Enantiopure 2-(1<i>H<\|i>-imidazol-yl)cycloalkanols under Continuous Flow Conditions. ACS Catalysis, 2012, 2, 1976-1983.	11.2	28

[^0]: 35
 Orbital Engineering: Photoactivation of an Organofunctionalized Polyoxotungstate. Chemistry - A
 European Journal, 2017, 23, 47-50.

