
## Birendra Nath Mallick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9788566/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Norepinephrine-Stimulated Increase in Na+,K+-ATPase Activity in the Rat Brain Is Mediated Through<br>α1A-Adrenoceptor Possibly by Dephosphorylation of the Enzyme. Journal of Neurochemistry, 2002, 74,<br>1574-1578.                      | 3.9 | 56        |
| 2  | Differential acute influence of medial and lateral preoptic areas on sleep-wakefulness in freely moving rats. Brain Research, 1990, 525, 242-248.                                                                                          | 2.2 | 54        |
| 3  | A Modified Method for Consistent and Reliable Golgi–Cox Staining in Significantly Reduced Time.<br>Frontiers in Neurology, 2010, 1, 157.                                                                                                   | 2.4 | 52        |
| 4  | Role of noradrenergic and GABA-ergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats. Neuropharmacology, 2006, 51, 1-11.                                                                           | 4.1 | 50        |
| 5  | A Mathematical Model towards Understanding the Mechanism of Neuronal Regulation of<br>Wake-NREMS-REMS States. PLoS ONE, 2012, 7, e42059.                                                                                                   | 2.5 | 46        |
| 6  | Activation of inactivation process initiates rapid eye movement sleep. Progress in Neurobiology, 2012, 97, 259-276.                                                                                                                        | 5.7 | 44        |
| 7  | GABA in pedunculo pontine tegmentum regulates spontaneous rapid eye movement sleep by acting on<br>GABAA receptors in freely moving rats. Neuroscience Letters, 2004, 365, 200-204.                                                        | 2.1 | 31        |
| 8  | REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats. Neuroscience<br>Letters, 2015, 590, 62-67.                                                                                                           | 2.1 | 28        |
| 9  | Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats. ENeuro, 2016, 3, ENEURO.0108-16.2016.                                                   | 1.9 | 27        |
| 10 | Differential staining of glia and neurons by modified Golgi-Cox method. Journal of Neuroscience<br>Methods, 2012, 209, 269-279.                                                                                                            | 2.5 | 25        |
| 11 | Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal<br>microbiome transplantation as damage control. European Journal of Neuroscience, 2021, 53, 2870-2900.                                | 2.6 | 25        |
| 12 | Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Medicine, 2019, 63, 29-37.                                                                         | 1.6 | 24        |
| 13 | Protective role of noradrenaline in benzo[ <i>a</i> ]pyreneâ€induced learning impairment in developing<br>rat. Journal of Neuroscience Research, 2013, 91, 1450-1462.                                                                      | 2.9 | 21        |
| 14 | Noradrenaline acting on α1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochemistry International, 2008, 52, 734-740.                                                    | 3.8 | 19        |
| 15 | Reciprocal changes in noradrenaline and GABA levels in discrete brain regions upon rapid eye movement sleep deprivation in rats. Neurochemistry International, 2017, 108, 190-198.                                                         | 3.8 | 17        |
| 16 | Rapid Eye Movement Sleep-Deprivation-Induced Changes in Glucose Metabolic Enzymes in Rat Brain.<br>Sleep, 1993, , .                                                                                                                        | 1.1 | 16        |
| 17 | Long-term primary culture of neurons taken from chick embryo brain: A model to study neural cell<br>biology, synaptogenesis and its dynamic properties. Journal of Neuroscience Methods, 2016, 263, 123-133.                               | 2.5 | 14        |
| 18 | Rapid eye movement sleep deprivation impairs neuronal plasticity and reduces hippocampal neuronal<br>arborization in male albino rats: Noradrenaline is involved in the process. Journal of Neuroscience<br>Research, 2021, 99, 1815-1834. | 2.9 | 14        |

BIRENDRA NATH MALLICK

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Differential influence of medial and lateral preoptic areas on body temperature in conscious and unconscious rats. Brain Research, 1991, 566, 303-307.                                                                                            | 2.2 | 13        |
| 20 | Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats. Behavioural Brain Research, 2019, 376, 112169.                                                                                         | 2.2 | 13        |
| 21 | Mechanism of noradrenaline-induced stimulation of Na–K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability. Molecular and Cellular Biochemistry, 2010, 336, 3-16.                      | 3.1 | 12        |
| 22 | REM sleep and its Loss-Associated Epigenetic Regulation with Reference to Noradrenaline in Particular. Current Neuropharmacology, 2016, 14, 28-40.                                                                                                | 2.9 | 11        |
| 23 | Neural mechanism of rapid eye movement sleep generation: Cessation of locus coeruleus neurons is a necessity. Acta Physiologica Sinica, 2005, 57, 401-13.                                                                                         | 0.5 | 11        |
| 24 | Rapid Eye Movement Sleep Deprivation Associated Increase in Na-K ATPase Activity in the Rat Brain is Due<br>to Noradrenaline Induced I±1-Adrenoceptor Mediated Increased α-Subunit of the Enzyme. Neurochemical<br>Research, 2015, 40, 1747-1757. | 3.3 | 10        |
| 25 | Dopaminergic- and cholinergic-inputs from substantia nigra and pedunculo-pontine tegmentum,<br>respectively, converge in amygdala to modulate rapid eye movement sleep in rats. Neuropharmacology,<br>2021, 193, 108607.                          | 4.1 | 8         |
| 26 | Activation of Retinotopic Visual Areas Is Central to REM Sleep Associated Dreams: Visual Dreams and Visual Imagery Possibly Co-Emerged In Evolution. Activitas Nervosa Superior, 2012, 54, 10-25.                                                 | 0.4 | 6         |
| 27 | Flowerpot method for rapid eye movement sleep deprivation does not induce stress as defined by elevated serum corticosterone level in rats. Neuroscience Letters, 2021, 745, 135631.                                                              | 2.1 | 6         |
| 28 | Mechanism of noradrenaline-induced α1-adrenoceptor mediated regulation of Na-K ATPase subunit<br>expression in Neuro-2a cells. Brain Research Bulletin, 2018, 139, 157-166.                                                                       | 3.0 | 3         |
| 29 | Targeting modulation of noradrenalin release in the brain for amelioration of REMS loss-associated effects. Journal of Translational Internal Medicine, 2015, 3, 8-16.                                                                            | 2.5 | 2         |
| 30 | Editorial (Thematic Issue: Epigenetics and Neuro-behavioral Modulations). Current<br>Neuropharmacology, 2016, 14, 2-2.                                                                                                                            | 2.9 | 2         |
| 31 | Noradrenergic β-Adrenoceptor-Mediated Intracellular Molecular Mechanism of Na–K ATPase Subunit<br>Expression in C6 Cells. Cellular and Molecular Neurobiology, 2018, 38, 441-457.                                                                 | 3.3 | 2         |
| 32 | Pedunculo-pontine tegmentum cholinergic REM-ON neurons modulate ventral tegmental neurons to modulate rapid eye movement sleep in rats. Neuropharmacology, 2022, 206, 108940.                                                                     | 4.1 | 1         |