Akinobu Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9788446/publications.pdf

Version: 2024-02-01

31 papers

2,192 citations

20 h-index 454955 30 g-index

32 all docs

 $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

3897 citing authors

#	Article	IF	CITATIONS
1	Kastor and Polluks polypeptides encoded by a single gene locus cooperatively regulate VDAC and spermatogenesis. Nature Communications, 2022, 13, 1071.	12.8	14
2	Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nature Communications, 2022, 13, 1500.	12.8	17
3	The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Reports, 2021, 34, 108688.	6.4	14
4	Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Research, 2021, 49, 7298-7317.	14.5	22
5	A ubiquitin-like protein encoded by the "noncoding―RNA TINCR promotes keratinocyte proliferation and wound healing. PLoS Genetics, 2021, 17, e1009686.	3.5	11
6	A Lipid Bilayer Formed on a Hydrogel Bead for Single Ion Channel Recordings. Micromachines, 2020, 11, 1070.	2.9	4
7	Cell cycle–dependent localization of the proteasome to chromatin. Scientific Reports, 2020, 10, 5801.	3.3	25
8	Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Research, 2019, 29, 628-640.	12.0	121
9	Hidden Peptides Encoded by Putative Noncoding RNAs. Cell Structure and Function, 2018, 43, 75-83.	1.1	44
10	SPAR, a IncRNA encoded mTORC1 inhibitor. Cell Cycle, 2017, 16, 815-816.	2.6	22
11	mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541, 228-232.	27.8	503
12	The pleiotropic role of non-coding genes in development and cancer. Current Opinion in Cell Biology, 2016, 43, 104-113.	5.4	19
13	p57 regulates T-cell development and prevents lymphomagenesis by balancing p53 activity and pre-TCR signaling. Blood, 2014, 123, 3429-3439.	1.4	26
14	Fbw7 Targets GATA3 through Cyclin-Dependent Kinase 2-Dependent Proteolysis and Contributes to Regulation of T-Cell Development. Molecular and Cellular Biology, 2014, 34, 2732-2744.	2.3	30
15	p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO Journal, 2013, 32, 970-981.	7.8	125
16	Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2335-2344.	2.4	35
17	Ablation of Fbxw7 Eliminates Leukemia-Initiating Cells by Preventing Quiescence. Cancer Cell, 2013, 23, 347-361.	16.8	144
18	Zoledronic Acid Enhances Lipopolysaccharide-Stimulated Proinflammatory Reactions through Controlled Expression of SOCS1 in Macrophages. PLoS ONE, 2013, 8, e67906.	2.5	43

#	Article	IF	CITATIONS
19	Genetic Reevaluation of the Role of F-Box Proteins in Cyclin D1 Degradation. Molecular and Cellular Biology, 2012, 32, 590-605.	2.3	58
20	Increased efficiency in the generation of induced pluripotent stem cells by <scp>F</scp> bxw7 ablation. Genes To Cells, 2012, 17, 768-777.	1.2	7
21	SCFFbw7 Modulates the NFκB Signaling Pathway by Targeting NFκB2 for Ubiquitination and Destruction. Cell Reports, 2012, 1, 434-443.	6.4	85
22	Development of mice without Cip/Kip CDK inhibitors. Biochemical and Biophysical Research Communications, 2012, 427, 285-292.	2.1	20
23	p57 Is Required for Quiescence and Maintenance of Adult Hematopoietic Stem Cells. Cell Stem Cell, 2011, 9, 262-271.	11.1	268
24	Fbxw $7\hat{l}^2$ resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. Cancer Science, 2011, 102, 749-755.	3.9	28
25	Deregulation of the p57-E2F1-p53 Axis Results in Nonobstructive Hydrocephalus and Cerebellar Malformation in Mice. Molecular and Cellular Biology, 2011, 31, 4176-4192.	2.3	22
26	Fbxw7-dependent Degradation of Notch Is Required for Control of "Stemness―and Neuronal-Glial Differentiation in Neural Stem Cells. Journal of Biological Chemistry, 2011, 286, 13754-13764.	3.4	93
27	Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. Journal of Clinical Investigation, 2011, 121, 342-354.	8.2	107
28	Conditional inactivation of <i>Fbxw7</i> impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. Journal of Experimental Medicine, 2007, 204, 2875-2888.	8.5	169
29	Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. Journal of Cell Biology, 2007, 179, i7-i7.	5.2	0
30	Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner. Biochemical and Biophysical Research Communications, 2006, 350, 114-119.	2.1	51
31	Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation. Cancer Science, 2006, 97, 729-736.	3.9	65