Luciana Balboa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978785/publications.pdf

Version: 2024-02-01

36 papers

1,199 citations

20 h-index 395702 33 g-index

40 all docs

40 docs citations

40 times ranked

1908 citing authors

#	Article	IF	CITATIONS
1	Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16+ monocyte population via the IL-10/STAT3 axis. Cell Research, 2015, 25, 1333-1351.	12.0	127
2	Outbreaks of Mycobacterium Tuberculosis MDR Strains Induce High IL-17 T-Cell Response in Patients With MDR Tuberculosis That Is Closely Associated With High Antigen Load. Journal of Infectious Diseases, 2011, 204, 1054-1064.	4.0	95
3	Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Reports, 2019, 26, 3586-3599.e7.	6.4	76
4	Role of Mincle in Alveolar Macrophage-Dependent Innate Immunity against Mycobacterial Infections in Mice. Journal of Immunology, 2012, 189, 3121-3129.	0.8	75
5	Patients with Multidrug-Resistant Tuberculosis Display Impaired Th1 Responses and Enhanced Regulatory T-Cell Levels in Response to an Outbreak of Multidrug-Resistant <i>Mycobacterium tuberculosis</i> Mand Ra Strains. Infection and Immunity, 2009, 77, 5025-5034.	2.2	67
6	Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood. Journal of Leukocyte Biology, 2011, 90, 69-75.	3.3	66
7	The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 1123.	4.8	51
8	<i>Brucella abortus</i> down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). Journal of Leukocyte Biology, 2017, 101, 759-773.	3.3	50
9	Massive plasmablast response elicited in the acute phase of hantavirus pulmonary syndrome. Immunology, 2017, 151, 122-135.	4.4	47
10	<i>Mycobacterium tuberculosis</i> impairs dendritic cell response by altering CD1b, DCâ€SIGN and MR profile. Immunology and Cell Biology, 2010, 88, 716-726.	2.3	45
11	Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Frontiers in Immunology, 2018, 9, 459.	4.8	40
12	Diverging biological roles among human monocyte subsets in the context of tuberculosis infection. Clinical Science, 2015, 129, 319-330.	4.3	39
13	Impaired dendritic cell differentiation of CD16â€positive monocytes in tuberculosis: Role of p38 MAPK. European Journal of Immunology, 2013, 43, 335-347.	2.9	38
14	PD-1/PD-L1 Pathway Modulates Macrophage Susceptibility to Mycobacterium tuberculosis Specific CD8+T cell Induced Death. Scientific Reports, 2019, 9, 187.	3.3	33
15	Effect of the BTK inhibitor ibrutinib on macrophage- and $\hat{I}^3\hat{I}$ T cell-mediated response against Mycobacterium tuberculosis. Blood Cancer Journal, 2018, 8, 100.	6.2	31
16	Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. ELife, 2020, 9, .	6.0	31
17	Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice. Clinical and Experimental Immunology, 2010, 162, 568-577.	2.6	27
18	<i>Mycobacterium tuberculosis</i> multi-drug-resistant strain M induces IL-17+IFNγ– CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clinical and Experimental Immunology, 2016, 187, 160-173.	2.6	23

#	Article	IF	CITATIONS
19	Clinical Isolates of Mycobacterium tuberculosis Differ in Their Ability to Induce Respiratory Burst and Apoptosis in Neutrophils as a Possible Mechanism of Immune Escape. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	21
20	Human pleural B-cells regulate IFN- \hat{l}^3 production by local T-cells and NK cells in a Mycobacterium tuberculosis-induced delayed hypersensitivity reaction. Clinical Science, 2014, 127, 391-403.	4.3	21
21	Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF- $1\hat{l}\pm$ activation. PLoS Pathogens, 2020, 16, e1008929.	4.7	21
22	CD3 expression distinguishes two $\hat{I}^3\hat{I}$ T cell receptor subsets with different phenotype and effector function in tuberculous pleurisy. Clinical and Experimental Immunology, 2009, 157, 385-394.	2.6	20
23	B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway. PLoS Pathogens, 2017, 13, e1006527.	4.7	20
24	Bacterial RNA Contributes to the Down-Modulation of MHC-II Expression on Monocytes/Macrophages Diminishing CD4+ T Cell Responses. Frontiers in Immunology, 2019, 10, 2181.	4.8	18
25	Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Reports, 2020, 33, 108547.	6.4	18
26	Monocyte-derived dendritic cells early exposed to Mycobacterium tuberculosis induce an enhanced T helper 17 response and transfer mycobacterial antigens. International Journal of Medical Microbiology, 2016, 306, 541-553.	3.6	16
27	NK cells from tuberculous pleurisy express high ICAMâ€1 levels and exert stimulatory effect on local T cells. European Journal of Immunology, 2009, 39, 2450-2458.	2.9	13
28	Differential Expression of Immunogenic Proteins on Virulent <i>Mycobacterium tuberculosis</i> Clinical Isolates. BioMed Research International, 2014, 2014, 1-13.	1.9	12
29	<i>Mycobacterium tuberculosis</i> Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- <i>$\frac{1}{2}$+$\frac{1}{2}$+Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators of Inflammation, 2017, 2017, 1-13.</i>	3.0	11
30	Editorial: The Mononuclear Phagocyte System in Infectious Disease. Frontiers in Immunology, 2019, 10, 1443.	4.8	10
31	Second generation <scp>BTK</scp> inhibitors impair the antiâ€fungal response of macrophages and neutrophils. American Journal of Hematology, 2020, 95, E174-E178.	4.1	10
32	Human macrophage polarization shapes <i>B. pertussis</i> intracellular persistence. Journal of Leukocyte Biology, 2022, 112, 173-184.	3.3	9
33	C5aR contributes to the weak Th1 profile induced by an outbreak strain of Mycobacterium tuberculosis. Tuberculosis, 2017, 103, 16-23.	1.9	7
34	The Cholinergic System Contributes to the Immunopathological Progression of Experimental Pulmonary Tuberculosis. Frontiers in Immunology, 2020, 11, 581911.	4.8	7
35	SLAMF1 signaling induces <i>Mycobacterium tuberculosis</i> uptake leading to endolysosomal maturation in human macrophages. Journal of Leukocyte Biology, 2021, 109, 257-273.	3.3	2
36	Tuberculosis Boosts HIV-1 Production by Macrophages Through IL-10/STAT3-Dependent Tunneling Nanotube Formation. SSRN Electronic Journal, O, , .	0.4	1

3