Siyuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978658/publications.pdf

Version: 2024-02-01

		236925	233421
54	2,157	25	45
papers	citations	h-index	g-index
			2000
57	57	57	3099
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Perovskite–organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604, 280-286.	27.8	181
2	Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nature Catalysis, 2018, 1, 300-305.	34.4	161
3	Degradation of iridium oxides <i>via</i> oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms. Energy and Environmental Science, 2019, 12, 3548-3555.	30.8	147
4	Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. Journal of Applied Physics, 2013, 114, .	2.5	124
5	Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media. Nature Catalysis, 2020, 3, 55-63.	34.4	124
6	ScGaN and ScAlN: emerging nitride materials. Journal of Materials Chemistry A, 2014, 2, 6042-6050.	10.3	96
7	Elastic constants and critical thicknesses of ScGaN and ScAlN. Journal of Applied Physics, 2013, 114, .	2.5	93
8	Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nature Communications, 2019, 10, 942.	12.8	89
9	Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3609-3615.	8.0	74
10	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	14.2	73
11	Mo-doped BiVO ₄ thin films – high photoelectrochemical water splitting performance achieved by a tailored structure and morphology. Sustainable Energy and Fuels, 2017, 1, 1830-1846.	4.9	72
12	Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. Journal of Materials Chemistry A, 2016, 4, 10203-10211.	10.3	67
13	Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis. Microscopy (Oxford, England), 2018, 67, i133-i141.	1.5	59
14	Why Tinâ€Doping Enhances the Efficiency of Hematite Photoanodes for Water Splittingâ€"The Full Picture. Advanced Functional Materials, 2018, 28, 1804472.	14.9	53
15	Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO ₄ and Mo:BiVO ₄ Thin Film Photoanodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16430-16442.	8.0	52
16	Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nature Communications, 2020, 11, 3190.	12.8	48
17	Oxygen Evolution Reaction on Tin Oxides Supported Iridium Catalysts: Do We Need Dopants?. ChemElectroChem, 2020, 7, 2330-2339.	3.4	48
18	Dissolution of BiVO ₄ Photoanodes Revealed by Time-Resolved Measurements under Photoelectrochemical Conditions. Journal of Physical Chemistry C, 2019, 123, 23410-23418.	3.1	47

#	Article	IF	Citations
19	Different Photostability of BiVO ₄ in Near-pH-Neutral Electrolytes. ACS Applied Energy Materials, 2020, 3, 9523-9527.	5.1	41
20	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	14.9	41
21	Could face-centered cubic titanium in cold-rolled commercially-pure titanium only be a Ti-hydride?. Scripta Materialia, 2020, 178, 39-43.	5.2	36
22	The dissociation of the [<i>a </i> + <i>c</i>] dislocation in GaN. Philosophical Magazine, 2013, 93, 3925-3938.	1.6	35
23	Time-resolved analysis of dissolution phenomena in photoelectrochemistry – A case study of WO3 photocorrosion. Electrochemistry Communications, 2018, 96, 53-56.	4.7	34
24	Nanocathodoluminescence Reveals Mitigation of the Stark Shift in InGaN Quantum Wells by Si Doping. Nano Letters, 2015, 15, 7639-7643.	9.1	33
25	Superior solar-to-hydrogen energy conversion efficiency by visible light-driven hydrogen production <i>via</i> highly reduced Ti ²⁺ 3+ states in a blue titanium dioxide photocatalyst. Catalysis Science and Technology, 2018, 8, 4657-4664.	4.1	30
26	Direct Observation of Depth-Dependent Atomic Displacements Associated with Dislocations in Gallium Nitride. Physical Review Letters, 2014, 113, 135503.	7.8	25
27	Dislocations Stabilized by Point Defects Increase Brittleness in PbTe. Advanced Functional Materials, 2021, 31, 2108006.	14.9	25
28	The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem. Ultramicroscopy, 2017, 176, 93-98.	1.9	24
29	The microstructure of non-polar a-plane (112 \hat{A} O) InGaN quantum wells. Journal of Applied Physics, 2016, 119, .	2.5	22
30	Direct MoB MBene domain formation in magnetron sputtered MoAlB thin films. Nanoscale, 2021, 13, 18077-18083.	5.6	18
31	Defects in epitaxial ScGaN: Dislocations, stacking faults, and cubic inclusions. Applied Physics Letters, 2014, 104, .	3.3	17
32	Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38994-39001.	8.0	17
33	Dynamic doping and Cottrell atmosphere optimize the thermoelectric performance of n-type PbTe over a broad temperature interval. Nano Energy, 2022, 101, 107576.	16.0	16
34	Growth, microstructure and morphology of epitaxial ScGaN films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 33-40.	1.8	15
35	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	6.7	14
36	Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold. Journal of Applied Physics, 2016, 120, 165704.	2.5	10

#	Article	IF	Citations
37	Sn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration. Zeitschrift Fur Physikalische Chemie, 2020, 234, 683-698.	2.8	10
38	High-throughput characterization of Ag–V–O nanostructured thin-film materials libraries for photoelectrochemical solar water splitting. International Journal of Hydrogen Energy, 2020, 45, 12037-12047.	7.1	10
39	Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]â^ Nanosheets during Heating and Their Photocatalytic Properties. Catalysts, 2020, 10, 13.	3.5	9
40	Self-toughened high entropy alloy with a body-centred cubic structure. Nanoscale, 2021, 13, 3602-3612.	5.6	8
41	Investigation of selective oxidation during cooling of hot-rolled iron-manganese-silicon alloys. Corrosion Science, 2021, 186, 109466.	6.6	8
42	Enhancing the Photon Absorption and Charge Carrier Dynamics of BaSnO ₃ Photoanodes via Intrinsic and Extrinsic Defects. Chemistry of Materials, 2022, 34, 4320-4335.	6.7	8
43	Interfacial Structure and Chemistry of GaN on Ge(111). Physical Review Letters, 2013, 111, 256101.	7.8	5
44	Insight into the impact of atomic- and nano-scale indium distributions on the optical properties of InGaN/GaN quantum well structures grown on m-plane freestanding GaN substrates. Journal of Applied Physics, 2019, 125, 225704.	2.5	5
45	Stabilization of nanosized MgFe2O4 nanoparticles in phenylene-bridged KIT-6-type ordered mesoporous organosilica (PMO). Microporous and Mesoporous Materials, 2020, 293, 109783.	4.4	5
46	Nanocrystalline Ga–Zn Oxynitride Materials: Minimized Defect Density for Improved Photocatalytic Activity?. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1133-1153.	2.8	5
47	Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phase. Chemistry - A European Journal, 2021, 27, 11600-11608.	3.3	5
48	Forging strength–ductility unity in a high entropy steel. Journal of Materials Science and Technology, 2022, 113, 158-165.	10.7	5
49	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">I<mml:msub><mml:mi mathvariant="normal">n<mml:mi>x</mml:mi></mml:mi </mml:msub><mml:mi mathvariant="normal">G<mml:msub><mml:mi< td=""><td>3.2</td><td>3</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	3
50	mathvariant="normal">a < mml:mi> < mml:mrow> < mml:mn> < mml:mn> < mml:mo> & < mml:mi> × < mml:mi × < mml:mi> × < mml:mi	ml:mi> <td>nml:mrow> <!--</td--></td>	nml:mrow> </td
51	Exploring stability of a nanoscale complex solid solution thin film by in situ heating transmission electron microscopy. MRS Bulletin, 2022, 47, 371-378.	3.5	3
52	Correlation between Structural Studies and the Cathodoluminescence of Individual Complex Niobate Particles. ACS Applied Electronic Materials, 2021, 3, 461-467.	4.3	2
53	3D cold pressure welded components – From the bonding mechanisms to the production of high strength joints. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 913-923.	0.9	1
54	Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. Microscopy and Microanalysis, 2021, , 1-11.	0.4	1