Joaquin Vanschoren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-features for meta-learning. Knowledge-Based Systems, 2022, 240, 108101.	4.0	28
2	Metalearning for Hyperparameter Optimization. Cognitive Technologies, 2022, , 103-122.	0.5	1
3	Dataset Characteristics (Metafeatures). Cognitive Technologies, 2022, , 53-75.	0.5	1
4	Setting Up Configuration Spaces and Experiments. Cognitive Technologies, 2022, , 143-168.	0.5	1
5	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
6	Automating Workflow/Pipeline Design. Cognitive Technologies, 2022, , 123-140.	0.5	1
7	Metalearning Approaches for Algorithm Selection I (Exploiting Rankings). Cognitive Technologies, 2022, , 19-37.	O.5	1
8	Interpretable Assessment of ST-Segment Deviation in ECG Time Series. Sensors, 2022, 22, 4919.	2.1	3
9	GAMA: A General Automated Machine Learning Assistant. Lecture Notes in Computer Science, 2021, , 560-564.	1.0	6
10	Adaptation Strategies for Automated Machine Learning on Evolving Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3067-3078.	9.7	32
11	Transformational machine learning: Learning how to learn from many related scientific problems. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
12	Multi-task learning with a natural metric for quantitative structure activity relationship learning. Journal of Cheminformatics, 2019, 11, 68.	2.8	14
13	OpenML: An R package to connect to the machine learning platform OpenML. Computational Statistics, 2019, 34, 977-991.	0.8	16
14	Meta-Learning. The Springer Series on Challenges in Machine Learning, 2019, , 35-61.	10.4	168
15	GAMA: Genetic Automated Machine learning Assistant. Journal of Open Source Software, 2019, 4, 1132.	2.0	28
16	Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Machine Learning, 2018, 107, 285-311.	3.4	55
17	The online performance estimation framework: heterogeneous ensemble learning for data streams. Machine Learning, 2018, 107, 149-176.	3.4	81
18	Speeding up algorithm selection using average ranking and active testing by introducing runtime. Machine Learning, 2018, 107, 79-108.	3.4	32

#	Article	IF	CITATIONS
19	Hyper-Parameter Tuning of a Decision Tree Induction Algorithm. , 2016, , .		56
20	Reduction of false arrhythmia alarms using signal selection and machine learning. Physiological Measurement, 2016, 37, 1204-1216.	1.2	46
21	ASlib: A benchmark library for algorithm selection. Artificial Intelligence, 2016, 237, 41-58.	3.9	121
22	Toward understanding online sentiment expression: an interdisciplinary approach with subgroup comparison and visualization. Social Network Analysis and Mining, 2016, 6, 1.	1.9	3
23	Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach. , 2015, , .		25
24	To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning. , 2015, ,		26
25	Having a Blast: Meta-Learning and Heterogeneous Ensembles for Data Streams. , 2015, , .		31
26	Who is More Positive in Private? Analyzing Sentiment Differences across Privacy Levels and Demographic Factors in Facebook Chats and Posts. , 2015, , .		7
27	Fast Algorithm Selection Using Learning Curves. Lecture Notes in Computer Science, 2015, , 298-309.	1.0	38
28	OpenML. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2014, 15, 49-60.	3.2	591
29	Algorithm Selection on Data Streams. Lecture Notes in Computer Science, 2014, , 325-336.	1.0	34
30	A survey of intelligent assistants for data analysis. ACM Computing Surveys, 2013, 45, 1-35.	16.1	65
31	OpenML: A Collaborative Science Platform. Lecture Notes in Computer Science, 2013, , 645-649.	1.0	29
32	Experiment databases. Machine Learning, 2012, 87, 127-158.	3.4	62
33	Selecting Classification Algorithms with Active Testing. Lecture Notes in Computer Science, 2012, , 117-131.	1.0	54
34	Meta-Learning Architectures: Collecting, Organizing and Exploiting Meta-Knowledge. Studies in Computational Intelligence, 2011, , 117-155.	0.7	3
35	Experiment Databases. , 2010, , 335-361.		5
36	A Community-Based Platform for Machine Learning Experimentation. Lecture Notes in Computer Science, 2009, , 750-754.	1.0	6

#	ARTICLE	IF	CITATIONS
37	Investigating Classifier Learning Behavior with Experiment Databases. Studies in Classification, Data Analysis, and Knowledge Organization, 2008, , 421-428.	0.1	2
38	Organizing the World's Machine Learning Information. Communications in Computer and Information Science, 2008, , 693-708.	0.4	4
39	Learning from the Past with Experiment Databases. Lecture Notes in Computer Science, 2008, , 485-496.	1.0	5
40	Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning. Lecture Notes in Computer Science, 2007, , 6-17.	1.0	32