
John Couwenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9786088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pollen productivity estimates strongly depend on assumed pollen dispersal II: Extending the ERV model. Holocene, 2022, 32, 1233-1250.	1.7	6
2	From genes to landscapes: Pattern formation and selfâ€regulation in raised bogs with an example from Tierra del Fuego. Ecosphere, 2022, 13, .	2.2	1
3	Saving soil carbon, greenhouse gas emissions, biodiversity and the economy: paludiculture as sustainable land use option in German fen peatlands. Regional Environmental Change, 2022, 22, .	2.9	12
4	Wetter is Better: Rewetting of Minerotrophic Peatlands Increases Plant Production and Moves Them Towards Carbon Sinks in a Dry Year. Ecosystems, 2021, 24, 1093-1109.	3.4	21
5	Rewetting does not return drained fen peatlands to their old selves. Nature Communications, 2021, 12, 5693.	12.8	75
6	Mass Balances of a Drained and a Rewetted Peatland: on Former Losses and Recent Gains. Soil Systems, 2020, 4, 16.	2.6	14
7	Comment on : Pollen-based reconstruction of Holocene land-cover in mountain regions: Evaluation of the landscape reconstruction algorithm in the Vicdessos valley, northern Pyrenees, France. Quaternary Science Reviews, 2020, 244, 106463.	3.0	2
8	Long-term rewetting of degraded peatlands restores hydrological buffer function. Science of the Total Environment, 2020, 749, 141571.	8.0	32
9	From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems, 2020, 4, 14.	2.6	45
10	Digital, Three-Dimensional Visualization of Root Systems in Peat. Soil Systems, 2020, 4, 13.	2.6	6
11	Roots, Tissues, Cells and Fragments—How to Characterize Peat from Drained and Rewetted Fens. Soil Systems, 2020, 4, 12.	2.6	11
12	Long-Term Rewetting of Three Formerly Drained Peatlands Drives Congruent Compositional Changes in Pro- and Eukaryotic Soil Microbiomes through Environmental Filtering. Microorganisms, 2020, 8, 550.	3.6	25
13	Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 2020, 11, 1644.	12.8	168
14	Multisensor data to derive peatland vegetation communities using a fixed-wing unmanned aerial vehicle. International Journal of Remote Sensing, 2019, 40, 9103-9125.	2.9	24
15	ROPES Reveals Past Land Cover and PPEs From Single Pollen Records. Frontiers in Earth Science, 2018, 6, .	1.8	17
16	A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Global Change Biology, 2018, 24, 5518-5533.	9.5	27
17	The extended downscaling approach: A new R-tool for pollen-based reconstruction of vegetation patterns. Holocene, 2017, 27, 1252-1258.	1.7	22
18	MARCO POLO – A new and simple tool for pollen-based stand-scale vegetation reconstruction. Holocene, 2017, 27, 321-330.	1.7	19

JOHN COUWENBERG

#	Article	IF	CITATIONS
19	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	9.5	114
20	The role of peatlands in climate regulation. , 2016, , 63-76.		59
21	International carbon policies as a new driver for peatland restoration. , 2016, , 291-313.		4
22	A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Vegetation History and Archaeobotany, 2016, 25, 541-553.	2.1	52
23	Pollen and macrofossils attributable to Fagopyrum in western Eurasia prior to the Late Medieval: An intercontinental mystery. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 1-21.	2.3	18
24	Carbon accumulation in a permafrost polygon peatland: steady longâ€ŧerm rates in spite of shifts between dry and wet conditions. Global Change Biology, 2015, 21, 803-815.	9.5	14
25	Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews, 2014, 97, 1-32.	3.0	122
26	Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews, 2011, 30, 999-1010.	3.0	164
27	Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia, 2011, 674, 67-89.	2.0	200
28	Greenhouse gas fluxes from tropical peatlands in southâ€east Asia. Global Change Biology, 2010, 16, 1715-1732.	9.5	361
29	Klimaschutz durch Schilfanbau. Ökologisches Wirtschaften, 2009, 24, .	0.2	1
30	Short-lived vegetational and environmental change during the Preboreal in the Biebrza Upper Basin (NE Poland). Quaternary Science Reviews, 2007, 26, 1975-1988.	3.0	19
31	Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity. Journal of Ecology, 2005, 93, 1238-1248.	4.0	70
32	A simulation model of mire patterning - revisited. Ecography, 2005, 28, 653-661.	4.5	26