List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978575/publications.pdf Version: 2024-02-01

KATHDIN LUNCE

#	Article	IF	CITATIONS
1	Sustainable Metal Catalysis with Iron: From Rust to a Rising Star?. Angewandte Chemie - International Edition, 2008, 47, 3317-3321.	7.2	1,101
2	Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 2018, 1, 385-397.	16.1	725
3	Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?. Energy and Environmental Science, 2010, 3, 1207.	15.6	657
4	Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5, 537-543.	6.6	633
5	Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes. Nature Communications, 2016, 7, 12641.	5.8	516
6	Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 8809-8814.	6.6	485
7	Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 2011, 47, 4849.	2.2	428
8	Palladium-catalysed hydroxylation and alkoxylation. Chemical Society Reviews, 2011, 40, 4912.	18.7	373
9	Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. Journal of the American Chemical Society, 2010, 132, 1770-1771.	6.6	345
10	Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research and Development, 2014, 18, 289-302.	1.3	336
11	General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 2011, 133, 12875-12879.	6.6	322
12	Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angewandte Chemie - International Edition, 2011, 50, 6004-6011.	7.2	321
13	Pincerâ€Type Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress. Chemistry - A European Journal, 2015, 21, 12226-12250.	1.7	312
14	Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362.	1.2	289
15	Hydrogenation of Esters to Alcohols with a Wellâ€Defined Iron Complex. Angewandte Chemie - International Edition, 2014, 53, 8722-8726.	7.2	269
16	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	6.6	265
17	A Convenient and General Iron atalyzed Reduction of Amides to Amines. Angewandte Chemie - International Edition, 2009, 48, 9507-9510.	7.2	264
18	Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex. Nature Communications, 2014, 5, 4111.	5.8	260

#	Article	IF	CITATIONS
19	Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes. Angewandte Chemie - International Edition, 2016, 55, 15364-15368.	7.2	259
20	Iron atalyzed Enantioselective Hydrosilylation of Ketones. Angewandte Chemie - International Edition, 2008, 47, 2497-2501.	7.2	258
21	Selective Methylation of Amines with Carbon Dioxide and H ₂ . Angewandte Chemie - International Edition, 2013, 52, 12156-12160.	7.2	254
22	Cooperative Transitionâ€Metal and Chiral BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie - International Edition, 2011, 50, 5120-5124.	7.2	245
23	A General Catalytic Methylation of Amines Using Carbon Dioxide. Angewandte Chemie - International Edition, 2013, 52, 9568-9571.	7.2	234
24	Carbon Dioxide—The Hydrogen‣torage Material of the Future?. ChemSusChem, 2008, 1, 801-804.	3.6	230
25	Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chemical Communications, 2010, 46, 1769.	2.2	230
26	Selective Catalytic Hydrogenation of Heteroarenes with <i>N</i> -Graphene-Modified Cobalt Nanoparticles (Co ₃ O ₄ –Co/NGr@î±-Al ₂ O ₃). Journal of the American Chemical Society, 2015, 137, 11718-11724.	6.6	223
27	Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chemical Communications, 2011, 47, 10972.	2.2	200
28	Utilization of CO ₂ as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis, 2017, 7, 1077-1086.	5.5	200
29	Enantioselective Synthesis of Amines: General, Efficient Iron atalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie - International Edition, 2010, 49, 8121-8125.	7.2	194
30	Highly Chemoselective Metal-Free Reduction of Phosphine Oxides to Phosphines. Journal of the American Chemical Society, 2012, 134, 18325-18329.	6.6	193
31	Two Iron Catalysts are Better than One: A General and Convenient Reduction of Aromatic and Aliphatic Primary Amides. Angewandte Chemie - International Edition, 2012, 51, 1662-1666.	7.2	187
32	Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chemical Reviews, 2022, 122, 6634-6718.	23.0	186
33	Improved and General Manganeseâ€Catalyzed Nâ€Methylation of Aromatic Amines Using Methanol. Chemistry - A European Journal, 2017, 23, 5410-5413.	1.7	183
34	Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chemical Science, 2017, 8, 3576-3585.	3.7	181
35	Manganese(I)â€Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie - International Edition, 2017, 56, 11237-11241.	7.2	180
36	Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications, 2016, 7, 11326.	5.8	179

#	Article	IF	CITATIONS
37	Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis, 2013, 3, 150-158.	5.5	178
38	A Convenient and General Iron-Catalyzed Hydrosilylation of Aldehydes. Organic Letters, 2007, 9, 5429-5432.	2.4	171
39	New catalytic properties of iron complexes: dehydration of amides to nitriles. Chemical Communications, 2009, , 4883.	2.2	170
40	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie - International Edition, 2017, 56, 7531-7534.	7.2	169
41	Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angewandte Chemie - International Edition, 2021, 60, 550-565.	7.2	165
42	Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations. Accounts of Chemical Research, 2018, 51, 1858-1869.	7.6	159
43	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie - International Edition, 2017, 56, 559-562.	7.2	158
44	Molecularly Defined Manganese Pincer Complexes for Selective Transfer Hydrogenation of Ketones. ChemSusChem, 2017, 10, 83-86.	3.6	153
45	General and Highly Efficient Iron atalyzed Hydrogenation of Aldehydes, Ketones, and α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 5120-5124.	7.2	151
46	Chemoselective Transfer Hydrogenation to Nitroarenes Mediated by Cubane‶ype Mo ₃ S ₄ Cluster Catalysts. Angewandte Chemie - International Edition, 2012, 51, 7794-7798.	7.2	149
47	General and Selective Copper-Catalyzed Reduction of Tertiary and Secondary Phosphine Oxides: Convenient Synthesis of Phosphines. Journal of the American Chemical Society, 2012, 134, 9727-9732.	6.6	143
48	Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie - International Edition, 2014, 53, 4359-4363.	7.2	143
49	Zinc atalyzed Chemoselective Reduction of Tertiary and Secondary Amides to Amines. Chemistry - A European Journal, 2011, 17, 12186-12192.	1.7	142
50	A General and Convenient Catalytic Synthesis of Nitriles from Amides and Silanes. Organic Letters, 2009, 11, 2461-2464.	2.4	141
51	Cooperative Iron–BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Quinoxalines and 2 <i>H</i> â€1,4â€Benzoxazines. Chemistry - A European Journal, 2013, 19, 4997-5003.	1.7	140
52	Cobalt–Pincer Complexes in Catalysis. Chemistry - A European Journal, 2019, 25, 122-143.	1.7	140
53	A General and Highly Selective Cobalt atalyzed Hydrogenation of Nâ€Heteroarenes under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2017, 56, 3216-3220.	7.2	139
54	An Environmentally Benign Process for the Hydrogenation of Ketones with Homogeneous Iron Catalysts. Chemistry - an Asian Journal, 2006, 1, 598-604.	1.7	134

#	Article	IF	CITATIONS
55	Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines. Nature Protocols, 2015, 10, 548-557.	5.5	131
56	Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 2017, 3, 580-585.	5.3	130
57	Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chemistry, 2015, 17, 898-902.	4.6	127
58	Direct Catalytic N-Alkylation of Amines with Carboxylic Acids. Journal of the American Chemical Society, 2014, 136, 14314-14319.	6.6	125
59	Selective Catalytic Monoreduction of Phthalimides and Imidazolidineâ€2,4â€diones. Angewandte Chemie - International Edition, 2011, 50, 9180-9184.	7.2	121
60	Development of a practical non-noble metal catalyst for hydrogenation of N-heteroarenes. Nature Catalysis, 2020, 3, 135-142.	16.1	120
61	A Biomimetic Iron Catalyst for the Epoxidation of Olefins with Molecular Oxygen at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1425-1429.	7.2	118
62	Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and Câ•O Bonds. Journal of the American Chemical Society, 2016, 138, 8781-8788.	6.6	118
63	Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst. Science Advances, 2018, 4, eaat0761.	4.7	116
64	Cobalt-based nanocatalysts for green oxidation and hydrogenation processes. Nature Protocols, 2015, 10, 916-926.	5.5	115
65	Biomimetic transfer hydrogenation of ketones with iron porphyrin catalysts. Tetrahedron Letters, 2006, 47, 8095-8099.	0.7	110
66	Selective Semihydrogenation of Alkynes with N-Graphitic-Modified Cobalt Nanoparticles Supported on Silica. ACS Catalysis, 2017, 7, 1526-1532.	5.5	110
67	Chemo―and Stereoselective Iron atalyzed Hydrosilylation of Ketones. Chemistry - an Asian Journal, 2010, 5, 1687-1691.	1.7	109
68	Selective Reduction of Amides to Amines by Boronic Acid Catalyzed Hydrosilylation. Angewandte Chemie - International Edition, 2013, 52, 11577-11580.	7.2	109
69	Catalytic Methylation of Cĩ٤¿H Bonds Using CO ₂ and H ₂ . Angewandte Chemie - International Edition, 2014, 53, 10476-10480.	7.2	108
70	Selective Catalytic Reductions of Amides and Nitriles to Amines. Topics in Catalysis, 2010, 53, 979-984.	1.3	107
71	General Catalytic Methylation of Amines with Formic Acid under Mild Reaction Conditions. Chemistry - A European Journal, 2014, 20, 7878-7883.	1.7	107
72	Synthesis and application of chiral monodentate phosphines in asymmetric hydrogenation. Coordination Chemistry Reviews, 2008, 252, 471-491.	9.5	106

#	Article	IF	CITATIONS
73	A General and Environmentally Benign Catalytic Reduction of Nitriles to Primary Amines. Chemistry - A European Journal, 2008, 14, 9491-9494.	1.7	105
74	Exploring the Reactivity of Nickel Pincer Complexes in the Decomposition of Formic Acid to CO ₂ /H ₂ and the Hydrogenation of NaHCO ₃ to HCOONa. ChemCatChem, 2015, 7, 65-69.	1.8	105
75	Improved Second Generation Iron Pincer Complexes for Effective Ester Hydrogenation. Advanced Synthesis and Catalysis, 2016, 358, 820-825.	2.1	104
76	Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 2012, 48, 4827.	2.2	103
77	A Practical and Benign Synthesis of Primary Amines through Ruthenium atalyzed Reduction of Nitriles. ChemSusChem, 2008, 1, 1006-1010.	3.6	100
78	Direct Rutheniumâ€Catalyzed Hydrogenation of Carboxylic Acids to Alcohols. Angewandte Chemie - International Edition, 2015, 54, 10596-10599.	7.2	100
79	Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 2016, 7, 3432-3442.	3.7	100
80	Synthesis of new chiral monodentate phosphines and their use in asymmetric hydrogenation. Tetrahedron Letters, 2002, 43, 4977-4980.	0.7	96
81	Relay Iron/Chiral BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2015, 137, 2763-2768.	6.6	96
82	Lewis Acid Promoted Ruthenium(II) atalyzed Etherifications by Selective Hydrogenation of Carboxylic Acids/Esters. Angewandte Chemie - International Edition, 2015, 54, 5196-5200.	7.2	94
83	A general and selective copper-catalyzed reduction of secondary amides. Chemical Communications, 2012, 48, 2683.	2.2	93
84	Cooperative Catalysis with Iron and a Chiral BrÃ,nsted Acid for Asymmetric Reductive Amination of Ketones. Advanced Synthesis and Catalysis, 2014, 356, 3451-3455.	2.1	93
85	General and selective reductive amination of carbonyl compounds using a core–shell structured Co ₃ O ₄ /NGr@C catalyst. Green Chemistry, 2014, 16, 4535-4540.	4.6	93
86	Hydrogenation of nitroarenes using defined iron–phosphine catalysts. Chemical Communications, 2013, 49, 9089.	2.2	90
87	Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst. ChemSusChem, 2017, 10, 842-846.	3.6	90
88	The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C–C bonds. Chemical Communications, 2013, 49, 3416.	2.2	89
89	Cooperative Catalysis by Palladium and a Chiral Phosphoric Acid: Enantioselective Amination of Racemic Allylic Alcohols. Angewandte Chemie - International Edition, 2014, 53, 13049-13053.	7.2	89
90	New Ruthenium Catalysts for Asymmetric Transfer Hydrogenation of Prochiral Ketones. Advanced Synthesis and Catalysis, 2007, 349, 853-860.	2.1	88

#	Article	IF	CITATIONS
91	Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes. Angewandte Chemie, 2016, 128, 15590-15594.	1.6	88
92	Formamidines – Versatile Ligands for Zincâ€Catalyzed Hydrosilylation and Ironâ€Catalyzed Epoxidation Reactions. European Journal of Organic Chemistry, 2010, 2010, 4893-4901.	1.2	85
93	Ironâ€Catalyzed Hydrogenation for the In Situ Regeneration of an NAD(P)H Model: Biomimetic Reduction of αâ€Ketoâ€fαâ€Iminoesters. Angewandte Chemie - International Edition, 2013, 52, 8382-8386.	7.2	85
94	Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C. Catalysis Science and Technology, 2014, 4, 629.	2.1	85
95	Synthesis of ethers from esters via Fe-catalyzed hydrosilylation. Chemical Communications, 2012, 48, 10742.	2.2	83
96	Consecutive Intermolecular Reductive Hydroamination: Cooperative Transitionâ€Metal and Chiral BrÃ,nsted Acid Catalysis. Chemistry - A European Journal, 2012, 18, 9005-9010.	1.7	83
97	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie - International Edition, 2017, 56, 11242-11247.	7.2	83
98	Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chemical Science, 2017, 8, 6239-6246.	3.7	83
99	Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines. Tetrahedron Letters, 2009, 50, 3654-3656.	0.7	81
100	A Molecularly Defined Ironâ€Catalyst for the Selective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2013, 19, 7701-7707.	1.7	81
101	Highly Selective Iron atalyzed Synthesis of Alkenes by the Reduction of Alkynes. Chemistry - an Asian Journal, 2011, 6, 1613-1623.	1.7	80
102	Efficient Base-Free Hydrogenation of Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Imidazolyl–Ruthenium Complexes. ACS Catalysis, 2016, 6, 47-54.	5.5	79
103	Copper atalyzed Enantioselective Hydrogenation of Ketones. Chemistry - A European Journal, 2011, 17, 101-105.	1.7	78
104	Zinc atalyzed Chemoselective Reduction of Esters to Alcohols. Chemistry - A European Journal, 2011, 17, 7414-7417.	1.7	76
105	A Convenient and General Ruthenium atalyzed Transfer Hydrogenation of Nitro―and Azobenzenes. Chemistry - A European Journal, 2011, 17, 14375-14379.	1.7	75
106	Ironâ€Catalyzed Synthesis of Secondary Amines: On the Way to Green Reductive Aminations. ChemSusChem, 2014, 7, 3012-3016.	3.6	75
107	Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 2015, 137, 13580-13587.	6.6	72
108	Copperâ€Catalyzed Enantioselective Hydrosilylation of Ketones by Using Monodentate Binaphthophosphepine Ligands. Chemistry - A European Journal, 2010, 16, 68-73.	1.7	71

KATHRIN JUNGE

#	Article	IF	CITATIONS
109	A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks. Polymer Chemistry, 2013, 4, 1848.	1.9	70
110	Efficient transfer hydrogenation of ketones in the presence of ruthenium N-heterocyclic carbene catalysts. Journal of Organometallic Chemistry, 2006, 691, 4652-4659.	0.8	69
111	Synthesis of Secondary Amines by Iron atalyzed Reductive Amination. ChemCatChem, 2010, 2, 1411-1415.	1.8	69
112	Selective Iron atalyzed Oxidation of Phenols and Arenes with Hydrogen Peroxide: Synthesis of Vitamin E Intermediates and Vitamin K ₃ . Chemistry - A European Journal, 2010, 16, 10300-10303.	1.7	69
113	An Easy and General Ironâ€catalyzed Reductive Amination of Aldehydes and Ketones with Anilines. Chemistry - an Asian Journal, 2011, 6, 2240-2245.	1.7	69
114	Synthesis of Nickel Nanoparticles with Nâ€Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 2016, 8, 129-134.	1.8	66
115	Biomassâ€Derived Catalysts for Selective Hydrogenation of Nitroarenes. ChemSusChem, 2017, 10, 3035-3039.	3.6	66
116	Iridium atalyzed Hydrogenation of Carboxylic Acid Esters. ChemCatChem, 2014, 6, 2810-2814.	1.8	65
117	Co-based heterogeneous catalysts from well-defined α-diimine complexes: Discussing the role of nitrogen. Journal of Catalysis, 2017, 351, 79-89.	3.1	65
118	Biomimetic transfer hydrogenation of 2-alkoxy- and 2-aryloxyketones with iron–porphyrin catalysts. Tetrahedron, 2008, 64, 3867-3876.	1.0	64
119	Development of New Hydrogenations of Imines and Benign Reductive Hydroaminations: Zinc Triflate as a Catalyst. ChemSusChem, 2012, 5, 777-782.	3.6	64
120	Manganese(I) atalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand. Angewandte Chemie, 2017, 129, 11389-11393.	1.6	64
121	Design of and Mechanistic Studies on a Biomimetic Iron–Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry - A European Journal, 2009, 15, 5471-5481.	1.7	63
122	Practical One-Pot Synthesis of Secondary Amines by Zinc-Catalyzed Reductive Amination. Catalysis Letters, 2011, 141, 55-61.	1.4	63
123	Fe-Catalyzed Oxidation Reactions of Olefins, Alkanes, and Alcohols: Involvement of Oxo- and Peroxo Complexes. Topics in Organometallic Chemistry, 2011, , 83-109.	0.7	63
124	An Efficient Zinc atalyzed Dehydration of Primary Amides to Nitriles. Chemistry - an Asian Journal, 2012, 7, 169-175.	1.7	63
125	Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters. Chemistry - A European Journal, 2018, 24, 1046-1052.	1.7	63
126	A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. Chemical Science, 2018, 9, 8134-8141.	3.7	63

#	Article	IF	CITATIONS
127	Ironâ€Catalyzed Epoxidation of Aromatic Olefins and 1,3â€Dienes. Advanced Synthesis and Catalysis, 2010, 352, 1771-1778.	2.1	62
128	Selective Iron atalyzed Oxidation of Benzylic and Allylic Alcohols. Advanced Synthesis and Catalysis, 2011, 353, 3023-3030.	2.1	62
129	Efficient and Convenient Palladiumâ€Catalyzed Amination of Allylic Alcohols with Nâ€Heterocycles. Angewandte Chemie - International Edition, 2012, 51, 11556-11560.	7.2	62
130	Copper-catalyzed reductive amination of aromatic and aliphatic ketones with anilines using environmental-friendly molecular hydrogen. Green Chemistry, 2012, 14, 2371.	4.6	62
131	Molecularly Defined Manganese Catalyst for Low-Temperature Hydrogenation of Carbon Monoxide to Methanol. Journal of the American Chemical Society, 2019, 141, 16923-16929.	6.6	62
132	BINEPINES: chiral binaphthalene-core monophosphepine ligands for multipurpose asymmetric catalysis. Chemical Society Reviews, 2011, 40, 3744.	18.7	61
133	TBAF-catalyzed hydrosilylation for the reduction of aromatic nitriles. New Journal of Chemistry, 2013, 37, 2061.	1.4	61
134	Fe ₂ O ₃ /NGr@C- and Co–Co ₃ O ₄ /NGr@C-catalysed hydrogenation of nitroarenes under mild conditions. Catalysis Science and Technology, 2016, 6, 4473-4477.	2.1	61
135	Straightforward Uranium atalyzed Dehydration of Primary Amides to Nitriles. Chemistry - A European Journal, 2011, 17, 9316-9319.	1.7	60
136	Ironâ€Catalyzed Reduction of Carboxylic Esters to Alcohols. European Journal of Organic Chemistry, 2013, 2061-2065.	1.2	60
137	Synthesis of Amines by Reductive Amination of Aldehydes and Ketones using Co ₃ O ₄ /NGr@C Catalyst. ChemCatChem, 2015, 7, 62-64.	1.8	60
138	A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science and Technology, 2016, 6, 7956-7966.	2.1	60
139	Synthesis of chiral monodentate binaphthophosphepine ligands and their application in asymmetric hydrogenations. Tetrahedron: Asymmetry, 2004, 15, 2621-2631.	1.8	59
140	Selective Ruthenium atalyzed Transfer Hydrogenations of Nitriles to Amines with 2â€Butanol. Chemistry - A European Journal, 2013, 19, 4437-4440.	1.7	59
141	Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nature Catalysis, 2019, 2, 523-528.	16.1	59
142	Enantioselective Hydrogenation ofβ-Ketoesters with Monodentate Ligands. Angewandte Chemie - International Edition, 2004, 43, 5066-5069.	7.2	57
143	Facile and Efficient Reduction of Ketones in the Presence of Zinc Catalysts Modified by Phenol Ligands. Chemistry - an Asian Journal, 2010, 5, 2027-2035.	1.7	57
144	Fast and selective iron-catalyzed transfer hydrogenations of aldehydes. Journal of Organometallic Chemistry, 2013, 744, 156-159.	0.8	56

#	Article	IF	CITATIONS
145	Selective Rhodium atalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angewandte Chemie - International Edition, 2015, 54, 12389-12393.	7.2	56
146	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	5.5	56
147	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	6.6	56
148	High Efficiency in Catalytic Hydrosilylation of Ketones with Zincâ€Based Precatalysts Featuring Hard and Soft Tridentate O,S,Oâ€Ligands. ChemCatChem, 2010, 2, 846-853.	1.8	55
149	A Facile and Efficient Iron atalyzed Reduction of Sulfoxides to Sulfides. ChemCatChem, 2011, 3, 666-670.	1.8	55
150	A General Catalytic Hydroamidation of 1,3â€Dienes: Atomâ€Efficient Synthesis of <i>N</i> â€Allyl Heterocycles, Amides, and Sulfonamides. Angewandte Chemie - International Edition, 2014, 53, 1630-1635.	7.2	55
151	A General and Highly Selective Cobalt atalyzed Hydrogenation of Nâ€Heteroarenes under Mild Reaction Conditions. Angewandte Chemie, 2017, 129, 3264-3268.	1.6	54
152	Cobalt atalyzed Aqueous Dehydrogenation of Formic Acid. Chemistry - A European Journal, 2019, 25, 8459-8464.	1.7	54
153	Synthesis of new chiral monodentate aminophosphinites and their use in catalytic asymmetric hydrogenations. Journal of Organometallic Chemistry, 2003, 675, 91-96.	0.8	53
154	Phosphine–Imidazolyl Ligands for the Efficient Ruthenium atalyzed Hydrogenation of Carboxylic Esters. Chemistry - A European Journal, 2012, 18, 9011-9018.	1.7	52
155	Palladium-catalysed regioselective hydroamination of 1,3-dienes: synthesis of allylic amines. Organic Chemistry Frontiers, 2014, 1, 368.	2.3	51
156	Hydrogenation of Aliphatic and Aromatic Nitriles Using a Defined Ruthenium PNP Pincer Catalyst. European Journal of Organic Chemistry, 2015, 2015, 5944-5948.	1.2	51
157	A straightforward zinc-catalysed reduction of sulfoxides to sulfides. Catalysis Science and Technology, 2011, 1, 104.	2.1	50
158	Synthesis, Characterization and Catalytic Application of Iron Complexes Modified by Monodentate Phosphane Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 2797-2802.	1.0	49
159	Application of a Bis(silylene) Nickel Complex as Precatalyst in C–C Bond Formation Reactions. Chemistry Letters, 2013, 42, 286-288.	0.7	49
160	A stable and practical nickel catalyst for the hydrogenolysis of C–O bonds. Green Chemistry, 2017, 19, 305-310.	4.6	49
161	A General Method for the Enantioselective Hydrogenation of β-Keto Esters using Monodentate Binaphthophosphepine Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1978-1986.	2.1	48
162	Fe(PyTACN) atalyzed <i>cis</i> â€Dihydroxylation of Olefins with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2013, 355, 947-956.	2.1	48

#	Article	IF	CITATIONS
163	Lowâ€Valent Molybdenumâ€Based Dual Preâ€Catalysts for Highly Efficient Catalytic Epoxidation of Alkenes and Deoxygenation of Sulfoxides. ChemCatChem, 2011, 3, 1186-1192.	1.8	47
164	Enantioselective Zinc atalyzed Hydrosilylation of Ketones using Pybox or Pybim Ligands. Chemistry - an Asian Journal, 2012, 7, 314-320.	1.7	47
165	Improving the Efficiency of the Hydrogenation of Carbonates and Carbon Dioxide to Methanol. ChemCatChem, 2013, 5, 1072-1074.	1.8	47
166	Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage. Chemical Communications, 2019, 55, 4969-4972.	2.2	47
167	Ruthenium/Imidazolylphosphine Catalysis: Hydrogenation of Aliphatic and Aromatic Nitriles to Form Amines. Chemistry - A European Journal, 2014, 20, 4227-4231.	1.7	46
168	Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science and Technology, 2017, 7, 1981-1985.	2.1	46
169	A Novel Process for Selective Ruthenium atalyzed Oxidation of Naphthalenes and Phenols. Advanced Synthesis and Catalysis, 2010, 352, 1615-1620.	2.1	45
170	Enantioselective Rhodium-Catalyzed Hydrogenation of Enamides in the Presence of Chiral Monodentate Phosphanes. European Journal of Organic Chemistry, 2006, 2006, 2912-2917.	1.2	44
171	Ruthenium Catalysts for Hydrogenation of Aromatic and Aliphatic Esters: Make Use of Bidentate Carbene Ligands. ChemSusChem, 2013, 6, 1001-1005.	3.6	44
172	Development of Practical Rhodium Phosphine Catalysts for the Hydrogenation of β-Dehydroamino Acid Derivatives. Organic Process Research and Development, 2007, 11, 568-577.	1.3	43
173	An Efficient and Convenient Palladium Catalyst System for the Synthesis of Amines from Allylic Alcohols. ChemSusChem, 2012, 5, 2039-2044.	3.6	43
174	Rutheniumâ€Catalyzed Transfer Hydrogenation of Nitriles: Reduction and Subsequent <i>N</i> â€Monoalkylation to Secondary Amines. European Journal of Organic Chemistry, 2013, 2013, 3671-3674.	1.2	43
175	Chemoselective semihydrogenation of alkynes catalyzed by manganese(<scp>i</scp>)-PNP pincer complexes. Catalysis Science and Technology, 2020, 10, 3994-4001.	2.1	43
176	Ammonia: An Environmentally Friendly Nitrogen Source for Primary Aniline Synthesis. ChemSusChem, 2010, 3, 1024-1029.	3.6	42
177	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€5upported Cobalt Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14488-14492.	7.2	42
178	Nickel-catalyzed C(sp2)–C(sp2) Cross Coupling Reactions of Sulfur-Functionalities and Grignard Reagents. Catalysis Letters, 2013, 143, 424-431.	1.4	41
179	Highly selective hydrogenation of amides catalysed by a molybdenum pincer complex: scope and mechanism. Chemical Science, 2019, 10, 10566-10576.	3.7	41
180	Zinc atalyzed Depolymerization of Artificial Polyethers. Chemistry - A European Journal, 2012, 18, 1910-1913.	1.7	40

#	Article	IF	CITATIONS
181	Zincâ€Catalyzed Depolymerization of Endâ€ofâ€Life Polysiloxanes. Angewandte Chemie - International Edition, 2014, 53, 2716-2721.	7.2	40
182	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie, 2017, 129, 7639-7642.	1.6	40
183	Cobalt-catalysed reductive C–H alkylation of indoles using carboxylic acids and molecular hydrogen. Chemical Science, 2017, 8, 6439-6450.	3.7	40
184	Manganese Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using Chiral Oxamide Ligands. Synlett, 2019, 30, 503-507.	1.0	39
185	Hydrosilylation of Ketones: From Metal–Organic Frameworks to Simple Base Catalysts. Chemistry - an Asian Journal, 2010, 5, 2341-2345.	1.7	38
186	A comparative computationally study about the defined m(II) pincer hydrogenation catalysts (m = fe, ru	ı,) Ţ <u>i</u> £TQq	0
187	Tailored Cobaltâ€Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie - International Edition, 2018, 57, 11673-11677.	7.2	38
188	Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes. Catalysis Science and Technology, 2020, 10, 3825-3842.	2.1	38
189	Enantioselective rhodium-catalyzed hydrogenation of enol carbamates in the presence of monodentate phosphines. Tetrahedron: Asymmetry, 2007, 18, 1288-1298.	1.8	37
190	A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol. Angewandte Chemie, 2017, 129, 574-577.	1.6	37
191	Enantioselective Hydrogenation of Ketones using Different Metal Complexes with a Chiral PNP Pincer Ligand. Advanced Synthesis and Catalysis, 2019, 361, 1913-1920.	2.1	37
192	Selective Acceptorless Dehydrogenation of Primary Amines to Imines by Core–Shell Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7501-7507.	7.2	37
193	Ironâ€Catalyzed Ringâ€Closing Depolymerization of Poly(tetrahydrofuran). ChemSusChem, 2013, 6, 1334-1336.	3.6	36
194	Convenient Reductive Methylation of Amines with Carbonates at Room Temperature. Chemistry - A European Journal, 2015, 21, 16759-16763.	1.7	36
195	A Mild and Chemoselective Reduction of Nitro and Azo Compounds Catalyzed by a Wellâ€Đefined Mo ₃ S ₄ Cluster Bearing Diamine Ligands. ChemCatChem, 2015, 7, 2675-2681.	1.8	36
196	Chemoselective Hydrogenation of Nitroarenes Catalyzed by Molybdenum Sulphide Clusters. ChemCatChem, 2017, 9, 1128-1134.	1.8	36
197	Towards a Zinc atalyzed Asymmetric Hydrogenation/Transfer Hydrogenation of Imines. Chemistry - an Asian Journal, 2012, 7, 2562-2568.	1.7	34
198	Selective catalytic two-step process for ethylene glycol from carbon monoxide. Nature Communications, 2016, 7, 12075.	5.8	34

#	Article	IF	CITATIONS
199	A General and Selective Rhodiumâ€Catalyzed Reduction of Amides, <i>N</i> â€Acyl Amino Esters, and Dipeptides Using Phenylsilane. Chemistry - A European Journal, 2016, 22, 7050-7053.	1.7	34
200	Iridium atalyzed Hydrogenation of βâ€Đehydroamino Acid Derivatives Using Monodentate Phosphoramidites. European Journal of Organic Chemistry, 2008, 2008, 3352-3362.	1.2	33
201	Efficient and Selective <i>N</i> â€Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry - A European Journal, 2017, 23, 13205-13212.	1.7	33
202	Oxidation of 1,2,4-trimethylbenzene (TMB), 2,3,6-trimethylphenol (TMP) and 2-methylnaphthalene to 2,3,5-trimethylbenzoquinone (TMBQ) and menadione (vitamin K3). Catalysis Today, 2011, 173, 68-75.	2.2	32
203	Exploring the mechanisms of aqueous methanol dehydrogenation catalyzed by defined PNP Mn and Re pincer complexes under base-free as well as strong base conditions. Catalysis Science and Technology, 2018, 8, 3649-3665.	2.1	32
204	Novel rhodium catalyst for asymmetric hydroformylation of styrene: Study of electronic and steric effects of phosphorus seven-membered ring ligands. Journal of Molecular Catalysis A, 2008, 280, 148-155.	4.8	31
205	Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions. Chemical Science, 2017, 8, 5536-5546.	3.7	31
206	Practical Catalytic Cleavage of C(sp ³)â^'C(sp ³) Bonds in Amines. Angewandte Chemie - International Edition, 2019, 58, 10693-10697.	7.2	31
207	Cobalt pincer complexes for catalytic reduction of nitriles to primary amines. Catalysis Science and Technology, 2019, 9, 1779-1783.	2.1	31
208	Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 2011, 141, 1079-1085.	1.4	30
209	Lowâ€Temperature Iron atalyzed Depolymerization of Polyethers. ChemSusChem, 2012, 5, 1195-1198.	3.6	30
210	Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 2016, 6, 7834-7838.	5.5	30
211	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie - International Edition, 2016, 55, 11049-11053.	7.2	30
212	Design of a bio-inspired imidazole-based iron catalyst for epoxidation of olefins: Mechanistic insights. Catalysis Today, 2010, 157, 364-370.	2.2	29
213	Application of Nickel Complexes Modified by Tridentate <i>O</i> , <i>N</i> , <i>O′</i> â€Ligands as Precatalysts in Nickelâ€Catalyzed C(sp ²)–C(sp ³) Bond Formations. European Journal of Inorganic Chemistry, 2012, 2012, 1269-1277.	1.0	29
214	Selective Ruthenium atalyzed Reductive Alkoxylation and Amination of Cyclic Imides. Angewandte Chemie - International Edition, 2016, 55, 387-391.	7.2	29
215	Palladium atalyzed Enantioselective Hydrosilylation of Aromatic Olefins. ChemCatChem, 2010, 2, 453-458	1.8	28
216	Straightforward Ironâ€Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 2011, 2011, 4760-4763.	1.2	28

#	Article	IF	CITATIONS
217	lridium atalysed Asymmetric Hydrogenation of Enamides in the Presence of 3,3′â€&ubstituted H8â€Phosphoramidites. Advanced Synthesis and Catalysis, 2009, 351, 1437-1441.	2.1	27
218	Nickel atalyzed Hydrodecyanation of Carbon–Cyano Bonds. Asian Journal of Organic Chemistry, 2013, 2, 150-156.	1.3	27
219	Mild Hydrosilylation of Amides by Platinum Nâ€Heterocyclic Carbene Catalysts. European Journal of Inorganic Chemistry, 2014, 2014, 2345-2349.	1.0	27
220	Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chinese Journal of Catalysis, 2019, 40, 1679-1685.	6.9	27
221	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie - International Edition, 2020, 59, 18679-18685.	7.2	27
222	A General Regioselective Synthesis of Alcohols by Cobalt atalyzed Hydrogenation of Epoxides. Angewandte Chemie - International Edition, 2020, 59, 11321-11324.	7.2	27
223	New Binding Modes of 1-Acetyl- and 1-Benzoyl-5-hydroxypyrazolines - Synthesis and Characterization of O,Oâ€2-Pyrazoline- and N,O-Pyrazoline-Zinc Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 2691-2697.	1.0	26
224	Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts. Catalysis Letters, 2011, 141, 833-838.	1.4	25
225	Deoxygenation of Sulfoxides to Sulfides in the Presence of Zinc Catalysts and Boranes as Reducing Reagents. Catalysis Letters, 2012, 142, 1003-1010.	1.4	25
226	Reduction of Nitroarenes Using CO and H2O in the Presence of a Nanostructured Cobalt Oxide/Nitrogen-Doped Graphene (NGr) Catalyst. Synlett, 2015, 26, 313-317.	1.0	25
227	A Biomassâ€Derived Nonâ€Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie, 2017, 129, 11394-11399.	1.6	24
228	Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect, 2020, 5, 10010-10014.	0.7	24
229	Highly enantioselective Ru-catalyzed asymmetric hydrogenation of Î ² -keto ester in ionic liquid/methanol mixtures. Applied Catalysis A: General, 2009, 364, 8-14.	2.2	23
230	Transfer-dehydrogenation of secondary alcohols catalyzed by manganese NNN-pincer complexes. Chemical Communications, 2019, 55, 14143-14146.	2.2	23
231	Zinc-Catalyzed Deoxygenation of Sulfoxides to Sulfides Applying [B(Pin)]2 as Deoxygenation Reagents. Catalysis Letters, 2012, 142, 1306-1311.	1.4	22
232	Lowâ€Temperature Depolymerization of Polysiloxanes with Iron Catalysis. ChemSusChem, 2014, 7, 2030-2036.	3.6	22
233	Synthesis of Enantiomerically Pure 1,2,3,4â€Tetrahydroâ€Î²â€carbolines and <i>N</i> â€Acylâ€1â€aryl Ethylamine Rhodiumâ€Catalyzed Hydrogenation. Chemistry - an Asian Journal, 2008, 3, 1104-1110.	es by 1.7	21
234	The Ironâ€Catalyzed Oxidation of Alkynes—1,2â€Dione Formation Versus Oxidative Cleavage—A Matter of Temperature. ChemCatChem, 2011, 3, 1929-1934.	1.8	21

#	Article	IF	CITATIONS
235	Zinc(II)â€ŧriflate as catalyst precursor for ringâ€closing depolymerization of endâ€ofâ€ŀife polytetrahydrofuran to produce tetrahydrofuran. Journal of Applied Polymer Science, 2014, 131, .	1.3	21
236	The Rise of the Iron Age in Hydrogen Evolution?. ChemCatChem, 2012, 4, 323-325.	1.8	20
237	A Mild and Selective Reduction of βâ€Lactams: Rhâ€Catalyzed Hydrosilylation towards Important Pharmacological Building Blocks. European Journal of Organic Chemistry, 2015, 2015, 1915-1919.	1.2	20
238	Molecular Defined Molybdenum–Pincer Complexes and Their Application in Catalytic Hydrogenations. Organometallics, 2018, 37, 4402-4408.	1.1	20
239	Improved Bimetallic Cobalt–Manganese Catalysts for Selective Oxidative Cleavage of Morpholine Derivatives. ACS Catalysis, 2019, 9, 11125-11129.	5.5	20
240	A Stateâ€ofâ€theâ€Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation. Chemistry - A European Journal, 2020, 26, 15589-15595.	1.7	20
241	Development of Bulk Organic Chemical Processes—History, Status, and Opportunities for Academic Research. CCS Chemistry, 2021, 3, 512-530.	4.6	19
242	Synthesis of Novel Monodentate Phosphoramidites and Their Application in Iridium atalyzed Asymmetric Hydrogenations. Chemistry - an Asian Journal, 2008, 3, 887-894.	1.7	18
243	Synthesis of δ- and ε-Cyanoesters by Zinc-Catalyzed Ring-Opening of Cyclic Ethers with Acid Chlorides and Subsequent Cyanation. Catalysis Letters, 2012, 142, 168-175.	1.4	18
244	Ironâ€catalyzed depolymerization of polysiloxanes to produce dichlorodimethylsilane, diacetoxydimethylsilane, or dimethoxydimethylsilane. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
245	Intermolecular Hydrogen-Fluorine Interaction in Dimolybdenum Triply Bonded Complexes Modified by Fluorinated Formamidine Ligands for the Construction of 2D- and 3D-Networks. European Journal of Inorganic Chemistry, 2011, 2011, 2103-2111.	1.0	17
246	Catalytic Formal Hydroamination of Allylic Alcohols Using Manganese PNPâ€Pincer Complexes. Advanced Synthesis and Catalysis, 2021, 363, 4177-4181.	2.1	17
247	Application of a Nickel-Bispidine Complex as Pre-Catalyst for C(sp 2)–C(sp 3) Bond Formations. Catalysis Letters, 2012, 142, 557-565.	1.4	16
248	Benyzl Alcohol Dehydrogenative Coupling Catalyzed by Defined Mn and Re PNP Pincer Complexes – A Computational Mechanistic Study. European Journal of Inorganic Chemistry, 2018, 2018, 4643-4657.	1.0	16
249	Tailored Cobaltâ€Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions. Angewandte Chemie, 2018, 130, 11847-11851.	1.6	16
250	Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles. ChemCatChem, 2020, 12, 4543-4549.	1.8	16
251	Expanding the scope of atropisomeric monodentate P-donor ligands in asymmetric catalysis. Asymmetric allylic alkylation of 1,3-diphenylpropenyl-1-esters by Pd/BINEPINE catalysts. Tetrahedron: Asymmetry, 2010, 21, 1406-1410.	1.8	15
252	Zinc-Catalyzed Depolymerization of Polyethers to Produce Valuable Building Blocks. Catalysis Letters, 2014, 144, 850-859.	1.4	15

KATHRIN JUNGE

#	Article	IF	CITATIONS
253	Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science and Technology, 2020, 10, 6116-6128.	2.1	15
254	Iron–PNPâ€₽incerâ€Catalyzed Transfer Dehydrogenation of Secondary Alcohols. ChemSusChem, 2019, 12, 2988-2993.	3.6	14
255	Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catalysis Science and Technology, 2020, 10, 4820-4826.	2.1	14
256	Application of fatty acid chlorides in the iron atalyzed depolymerization of polyethers. European Journal of Lipid Science and Technology, 2013, 115, 239-245.	1.0	13
257	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie, 2016, 128, 11215-11219.	1.6	13
258	Conversion of Poly(methylhydrosiloxane) Waste to Useful Commodities. Catalysis Letters, 2016, 146, 345-352.	1.4	13
259	Depolymerization protocol for linear, branched, and crosslinked endâ€ofâ€life silicones with boron trifluoride diethyl etherate as the depolymerization reagent. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
260	Ironâ€catalyzed depolymerizations of silicones with hexanoic anhydride provide a potential recycling method for endâ€ofâ€life polymers. European Journal of Lipid Science and Technology, 2015, 117, 778-785.	1.0	12
261	Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry and Engineering, 2019, 7, 17107-17113.	3.2	12
262	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	3.7	12
263	Darstellung, Eigenschaften und Reaktionsverhalten von 2-(Dimethylaminomethyl)phenyl- und 8-(Dimethylamino)naphthylsubstituierten Lithiumhydridosilylamiden - Bildung von Silaniminen durch Lithiumhydrideliminierung. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1999, 625, 1532-1541.	0.6	11
264	Hydrogenation of phenyl-substituted Cî€,N, Cî€N,Cî€,C, Cî€C and Cî€O functional groups by Cr, Mo and W PNP pincer complexes – a DFT study. Catalysis Science and Technology, 2017, 7, 2298-2307.	2.1	11
265	A General Regioselective Synthesis of Alcohols by Cobaltâ€Catalyzed Hydrogenation of Epoxides. Angewandte Chemie, 2020, 132, 11417-11420.	1.6	11
266	HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chemical Science, 2021, 12, 13101-13119.	3.7	11
267	Reaktionen von Lithiumhydridosilylamiden RR′(H)Si-N(Li)R″ mit Chlortrimethylsilan in Tetrahydrofuran und unpolaren Lösungsmitteln: N-Silylierung und/oder Cyclodisilazanbildung. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2001, 627, 2680-2692.	0.6	10
268	Kinetic Study of the Asymmetric Hydrogenation of Methyl Acetoacetate in the Presence of a Ruthenium Binaphthophosphepine Complex. Advanced Synthesis and Catalysis, 2009, 351, 235-245.	2.1	10
269	Nickel Complexes Modified by O,N,O'â€Ligands as Synthons for the Straightforward Synthesis of Highly Efficient Precatalysts for CC Bond Formation. Asian Journal of Organic Chemistry, 2012, 1, 322-326.	1.3	10
270	Application of Crabtree/Pfaltz-Type Iridium Complexes for the Catalyzed Asymmetric Hydrogenation of an Agrochemical Building Block. Organic Process Research and Development, 2020, 24, 443-447.	1.3	10

#	Article	IF	CITATIONS
271	Copper-catalysed low-temperature water–gas shift reaction for selective deuteration of aryl halides. Chemical Science, 2021, 12, 14033-14038.	3.7	10
272	Low-Valent Molybdenum PNP Pincer Complexes as Catalysts for the Semihydrogenation of Alkynes. Organometallics, 2022, 41, 1797-1805.	1.1	10
273	Silicon-Enriched Nickel Nanoparticles for Hydrogenation of N-Heterocycles in Aqueous Media. ACS Applied Nano Materials, 2022, 5, 5625-5630.	2.4	9
274	Manganeseâ€Catalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
275	Exploring the activities of vanadium, niobium, and tantalumÂPNP pincer complexes in the hydrogenation of phenyl-substituted CN, CN, CC, CC, and CO functional groups. Comptes Rendus Chimie, 2018, 21, 303-309.	0.2	8
276	From Mobile Phones to Catalysts: E-Waste-Derived Heterogeneous Copper Catalysts for Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 10062-10072.	3.2	8
277	A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem, 2022, 15, .	3.6	8
278	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€6upported Cobalt Catalyst. Angewandte Chemie, 2018, 130, 14696-14700.	1.6	7
279	Catalytic Epoxidations with Pyridinebis(oxazoline)–Methyltrioxorhenium Complexes and Nitrogenâ€Containing Catalyst Systems. European Journal of Inorganic Chemistry, 2012, 2012, 5972-5978.	1.0	6
280	Heterogeneous Iron-Catalyzed Hydrogenation of Nitroarenes under Water-Gas Shift Reaction Conditions. Synthesis, 2018, 50, 4369-4376.	1.2	6
281	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie, 2020, 132, 18838-18844.	1.6	6
282	Iron atalyzed Epoxidation of Linear αâ€Olefins with Hydrogen Peroxide. ChemCatChem, 2022, 14, .	1.8	6
283	Diastereoselective hydrogenation of arenes and pyridines using supported ruthenium nanoparticles under mild conditions. Chemical Communications, 2022, 58, 8842-8845.	2.2	6
284	Iron-based pre-catalyst supported on polyformamidine for C–C bond formation. Polymer Chemistry, 2012, 3, 751.	1.9	5
285	Dual functionality of formamidine polymers, as ligands and as bases, in ruthenium-catalysed hydrogen evolution from formic acid. Polymer Chemistry, 2013, 4, 2741.	1.9	5
286	Aerobic iron-catalyzed site-selective C(sp3)–C(sp3) bond cleavage in N-heterocycles. Catalysis Communications, 2021, 157, 106333.	1.6	4
287	2â€(1 <i>S</i>)â€Camphanoyloxyâ€2′â€phosphanylbiphenyl Ligands – Synthesis, Structure, and Preliminary in Transitionâ€Metal Catalysis. European Journal of Inorganic Chemistry, 2017, 2017, 2762-2773.	Tests 1.0	4
288	Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents. Chimia, 2015, 69, 327.	0.3	2

KATHRIN JUNGE

#	Article	IF	CITATIONS
289	Weimar-The Place to be for Catalysis in Germany. ChemCatChem, 2012, 4, 1068-1069.	1.8	1
290	Depolymerization of end-of-life poly(dimethylsilazane) with boron trifluoride diethyl etherate to produce difluorodimethylsilane as useful commodity. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1189-1193.	0.8	1
291	Synthesis and catalytic application of novel binaphthyl-derived phosphorous ligands. Arkivoc, 2007, 2007, 50-66.	0.3	1
292	Cobaltâ€Catalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry - A European Journal, 2022, 28, .	1.7	1
293	A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem, 2022, , e202200248.	3.6	1
294	2,6-Bis[(S)-4-benzyl-4,5-dihydro-1,3-oxazol-2-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1181-o1181.	0.2	0
295	Innenrücktitelbild: Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters (Angew. Chem. 26/2017). Angewandte Chemie, 2017, 129, 7787-7787.	1.6	Ο
296	Front Cover: Homogeneous Catalysis by Manganese-Based Pincer Complexes (Eur. J. Org. Chem. 30/2017). European Journal of Organic Chemistry, 2017, 2017, 4343-4343.	1.2	0
297	{Bis[2-(diisopropylphosphanyl)ethyl]amine}carbonyl(tetrahydroborato)cobalt(I). IUCrData, 2018, 3, .	0.1	Ο
298	Bis(quinolinium) tetrabromidomanganate(II). IUCrData, 2019, 4, .	0.1	0
299	Bis(benzo[<i>h</i>]quinolin-10-olato-l̂° ² <i>N</i> , <i>O</i>)bromidomanganese(III). IUCrData, 2020, 5, .	0.1	0
300	Manganese atalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie, 0, , .	1.6	0