Jeff Goshawk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9784416/publications.pdf

Version: 2024-02-01

759233 610901 23 604 12 24 h-index citations g-index papers 24 24 24 735 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive LCâ ⁻ 'MS ^E Lipidomic Analysis using a Shotgun Approach and Its Application to Biomarker Detection and Identification in Osteoarthritis Patients. Journal of Proteome Research, 2010, 9, 2377-2389.	3.7	212
2	Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environmental Science & Enpy; Technology, 2020, 54, 15120-15131.	10.0	69
3	Generic dealkylation: a tool for increasing the hitâ€rate of metabolite rationalization, and automatic customization of mass defect filters. Rapid Communications in Mass Spectrometry, 2009, 23, 939-948.	1.5	61
4	Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometry: A Novel Technique Applied to Migration of Nonintentionally Added Substances from Polyethylene Films Intended for Use as Food Packaging. Analytical Chemistry, 2019, 91, 12741-12751.	6.5	38
5	Discovery and Characterization of Phenolic Compounds in Bearberry (<i>Arctostaphylos uva-ursi</i>) Leaves Using Liquid Chromatography–lon Mobility–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2021, 69, 10856-10868.	5.2	25
6	Squeezing flow of continuous fibre-reinforced composites. Journal of Non-Newtonian Fluid Mechanics, 1997, 73, 327-342.	2.4	21
7	MEAD (part II)â€"Predictions of radioactivity concentrations in the Irish Sea. Journal of Environmental Radioactivity, 2003, 68, 193-214.	1.7	21
8	Structure reorganization during the rheological characterization of continuous fibre-reinforced composites in plane shear. Composites Part A: Applied Science and Manufacturing, 1996, 27, 279-286.	7.6	18
9	The use of ion mobility time-of-flight mass spectrometry to assess the migration of polyamide 6 and polyamide 66 oligomers from kitchenware utensils to food. Food Chemistry, 2021, 350, 129260.	8.2	17
10	The effect of oscillation on the drainage of an elastico-viscous liquid. Journal of Non-Newtonian Fluid Mechanics, 1994, 54, 449-464.	2.4	14
11	MEAD (part I)â€"a mathematical model of the long-term dispersion of radioactivity in shelf sea environments. Journal of Environmental Radioactivity, 2003, 68, 115-135.	1.7	12
12	Profiling of the known-unknown Passiflora variant complement by liquid chromatography - Ion mobility - Mass spectrometry. Talanta, 2021, 221, 121311.	5.5	12
13	lon mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans. Journal of Chromatography A, 2020, 1616, 460778.	3.7	11
14	Enhancement of the drainage of non-Newtonian liquid films by oscillation. Journal of Non-Newtonian Fluid Mechanics, 1994, 51, 21-60.	2.4	10
15	Reconstructing historical radionuclide concentrations along the east coast of Ireland using a compartmental model. Science of the Total Environment, 2000, 254, 17-30.	8.0	10
16	The detection and elucidation of oligomers migrating from biodegradable multilayer teacups using liquid chromatography coupled to ion mobility time-of-flight mass spectrometry and gas chromatography–mass spectrometry. Food Chemistry, 2022, 374, 131777.	8.2	10
17	A Collision Cross Section Database for Extractables and Leachables from Food Contact Materials. Journal of Agricultural and Food Chemistry, 2022, 70, 4457-4466.	5.2	10
18	The application of ion mobility time of flight mass spectrometry to elucidate neo-formed compounds derived from polyurethane adhesives used in champagne cork stoppers. Talanta, 2021, 234, 122632.	5.5	9

#	ARTICLE	IF	CITATION
19	Prediction of Collision Cross-Section Values for Extractables and Leachables from Plastic Products. Environmental Science & En	10.0	8
20	The migration of NIAS from ethylene-vinyl acetate corks and their identification using gas chromatography mass spectrometry and liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry. Food Chemistry, 2022, 366, 130592.	8.2	6
21	The flow of continuous fibre-reinforced composites in steady shear. Composites Science and Technology, 1996, 56, 63-74.	7.8	3
22	The use of interferometry of measure flow characteristics of an oscillating draining film. Journal of Non-Newtonian Fluid Mechanics, 1996, 64, 1-17.	2.4	1
23	Constitutive equations for anisotropic continua. Composites Part A: Applied Science and Manufacturing, 1998, 29, 133-140.	7.6	1