Rosario R Rizzuto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978400/publications.pdf

Version: 2024-02-01

222 papers 38,947 citations

91 h-index 192 g-index

239 all docs 239 docs citations

239 times ranked 38220 citing authors

#	Article	IF	CITATIONS
1	A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 736-749.	3.6	4
2	The molecular complexity of the Mitochondrial Calcium Uniporter. Cell Calcium, 2021, 93, 102322.	2.4	29
3	Skeletal muscle mitochondria in health and disease. Cell Calcium, 2021, 94, 102357.	2.4	21
4	Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake. Cell Reports, 2021, 35, 109087.	6.4	16
5	From the Identification to the Dissection of the Physiological Role of the Mitochondrial Calcium Uniporter: An Ongoing Story. Biomolecules, 2021, 11, 786.	4.0	17
6	Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter. Cell Reports, 2021, 35, 109275.	6.4	28
7	Mitochondrial K+ channels and their implications for disease mechanisms. , 2021, 227, 107874.		29
8	The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Science Signaling, 2021, 14, eabf3838.	3.6	17
9	The Mitochondrial Ca2+ Uptake and the Fine-Tuning of Aerobic Metabolism. Frontiers in Physiology, 2020, 11, 554904.	2.8	60
10	The ER-mitochondria tether at the hub of Ca2+ signaling. Current Opinion in Physiology, 2020, 17, 261-268.	1.8	21
11	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	3.6	48
12	A High-Throughput Screening Identifies MICU1 Targeting Compounds. Cell Reports, 2020, 30, 2321-2331.e6.	6.4	54
13	The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia, 2020, 63, 1368-1381.	6.3	37
14	MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death and Differentiation, 2019, 26, 179-195.	11.2	145
15	Crosstalk between Mitochondrial Ca ²⁺ Uptake and Autophagy in Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	4.0	8
16	Methods to Measure Intracellular Ca2+ Concentration Using Ca2+-Sensitive Dyes. Methods in Molecular Biology, 2019, 1925, 43-58.	0.9	4
17	Crosstalk between Calcium and ROS in Pathophysiological Conditions. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	4.0	115
18	Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	42

#	Article	IF	CITATIONS
19	Loss of mitochondrial calcium uniporter rewires skeletal muscle metabolism and substrate preference. Cell Death and Differentiation, 2019, 26, 362-381.	11.2	53
20	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
21	Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Archiv European Journal of Physiology, 2018, 470, 1165-1179.	2.8	119
22	The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.	2.4	62
23	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
24	Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Research, 2018, 7, 1858.	1.6	46
25	Parkin-dependent regulation of the MCU complex component MICU1. Scientific Reports, 2018, 8, 14199.	3.3	31
26	MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PLoS ONE, 2018, 13, e0196580.	2.5	29
27	Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Frontiers in Physiology, 2018, 9, 791.	2.8	51
28	Molecular Players of Mitochondrial Calcium Signaling: Similarities and Different Aspects in Various Organisms. Biological and Medical Physics Series, 2017, , 41-65.	0.4	0
29	Mitochondrial Calcium Handling in Physiology and Disease. Advances in Experimental Medicine and Biology, 2017, 982, 25-47.	1.6	61
30	Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. Plant Physiology, 2017, 173, 1355-1370.	4.8	54
31	Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9006-E9015.	7.1	70
32	Role of p66shc in skeletal muscle function. Scientific Reports, 2017, 7, 6283.	3.3	11
33	Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E641-E650.	3.5	25
34	Structure, Activity Regulation, and Role of the Mitochondrial Calcium Uniporter in Health and Disease. Frontiers in Oncology, 2017, 7, 139.	2.8	80
35	Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiological Reports, 2016, 4, e13005.	1.7	71
36	The mitochondrial calcium uniporter regulates breast cancer progression via <scp>HIF</scp> â€1α. EMBO Molecular Medicine, 2016, 8, 569-585.	6.9	195

3

#	Article	IF	CITATIONS
37	Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annual Review of Biochemistry, 2016, 85, 161-192.	11.1	348
38	Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 2016, 118, 1960-1991.	4.5	330
39	Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends in Biochemical Sciences, 2016, 41, 1035-1049.	7.5	382
40	<scp>FATE</scp> 1 antagonizes calcium―and drug―induced apoptosis by uncoupling <scp>ER</scp> and mitochondria. EMBO Reports, 2016, 17, 1264-1280.	4.5	102
41	The m -AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Molecular Cell, 2016, 64, 148-162.	9.7	153
42	A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca2+ Uptake Machinery of Skeletal Muscle. Molecular Cell, 2016, 64, 760-773.	9.7	97
43	Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2457-2464.	4.1	62
44	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	7.1	247
45	Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium, 2015, 58, 11-17.	2.4	61
46	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	10.3	1,006
47	Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU). Genomics Data, 2015, 5, 64-67.	1.3	15
48	Structure and function of the mitochondrial calcium uniporter complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2006-2011.	4.1	154
49	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell Reports, 2015, 10, 1269-1279.	6.4	170
50	Measuring Baseline Ca2+ Levels in Subcellular Compartments Using Genetically Engineered Fluorescent Indicators. Methods in Enzymology, 2014, 543, 47-72.	1.0	17
51	Toll″ike receptors hit calcium. EMBO Reports, 2014, 15, 468-469.	4.5	5
52	Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nature Genetics, 2014, 46, 188-193.	21.4	311
53	Molecular control of mitochondrial calcium uptake. Biochemical and Biophysical Research Communications, 2014, 449, 373-376.	2.1	27
54	Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Molecular and Cellular Endocrinology, 2014, 383, 137-146.	3.2	96

#	Article	IF	Citations
55	Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology <scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> ssociation <scp>W</scp> inter <scp>M</scp> eeting on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European lournal of Heart Failure. 2014. 16. 6-14.	7.1	1
56	Altered dopamine homeostasis differentially affects mitochondrial voltage-dependent anion channels turnover. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1816-1822.	3.8	31
57	Adrenergic Signaling Regulates Mitochondrial Ca ²⁺ Uptake Through Pyk2-Dependent Tyrosine Phosphorylation of the Mitochondrial Ca ²⁺ Uniporter. Antioxidants and Redox Signaling, 2014, 21, 863-879.	5.4	69
58	The Use of Aequorin and Its Variants for Ca ²⁺ Measurements. Cold Spring Harbor Protocols, 2014, 2014, pdb.top066118.	0.3	18
59	Using Targeted Variants of Aequorin to Measure Ca ²⁺ Levels in Intracellular Organelles. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot072843.	0.3	12
60	MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity. Molecular Cell, 2014, 53, 726-737.	9.7	441
61	Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Molecular Metabolism, 2014, 3, 29-41.	6.5	324
62	KαλóÏ, και AγαθóÏ,: how mitochondrial beauty translates into biological virtue. Current Opinion in Cell Biolog 2013, 25, 477-482.	gy _{5.4}	5
63	The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO Journal, 2013, 32, 2362-2376.	7.8	408
64	Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nature Protocols, 2013, 8, 2105-2118.	12.0	149
65	Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic \hat{l}^2 cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 543-554.	2.8	73
66	Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25. Current Biology, 2013, 23, 58-63.	3.9	198
67	The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Physiological Roles. Journal of Biological Chemistry, 2013, 288, 10750-10758.	3.4	131
68	Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Human Molecular Genetics, 2012, 21, 3858-3870.	2.9	49
69	Mitofusin 2 Joins the Sarcoplasmic Reticulum and Mitochondria at the Hip to Sustain Cardiac Energetics. Circulation Research, 2012, 111, 821-823.	4.5	10
70	Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Human Molecular Genetics, 2012, 21, 2277-2287.	2.9	84
71	The selective inhibition of nuclear PKCÎ \P restores the effectiveness of chemotherapeutic agents in chemoresistant cells. Cell Cycle, 2012, 11, 1040-1048.	2.6	11
72	Withdrawal of Essential Amino Acids Increases Autophagy by a Pathway Involving Ca2+/Calmodulin-dependent Kinase Kinase-β (CaMKK-β). Journal of Biological Chemistry, 2012, 287, 38625-38636.	3.4	103

#	Article	IF	CITATIONS
73	Mitochondrial Ca ²⁺ uptake contributes to buffering cytoplasmic Ca ²⁺ peaks in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12986-12991.	7.1	192
74	The Pathophysiology of LETM1. Journal of General Physiology, 2012, 139, 445-454.	1.9	61
75	Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with sco2 mutations. Orphanet Journal of Rare Diseases, 2012, 7, 21.	2.7	29
76	Mitochondrial †flashes': a radical concept repHined. Trends in Cell Biology, 2012, 22, 503-508.	7.9	74
77	Ero1α Regulates Ca ²⁺ Fluxes at the Endoplasmic Reticulum–Mitochondria Interface (MAM). Antioxidants and Redox Signaling, 2012, 16, 1077-1087.	5.4	180
78	Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 2012, 13, 566-578.	37.0	1,369
79	The mitochondrial Ca2+ uniporter. Cell Calcium, 2012, 52, 16-21.	2.4	61
80	The Mitochondrial Ca2+ Uniporter MCU Is Essential for Glucose-Induced ATP Increases in Pancreatic \hat{l}^2 -Cells. PLoS ONE, 2012, 7, e39722.	2.5	146
81	A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 2011, 476, 336-340.	27.8	1,622
82	Mitochondrial longevity pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 260-268.	4.1	71
83	Molecules and roles of mitochondrial calcium signaling. BioFactors, 2011, 37, 219-227.	5.4	34
84	Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biology, 2011, 12, 27.	3.0	9
85	NF-κB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 94-104.	4.9	14
86	Signaling pathways in mitochondrial dysfunction and aging. Mechanisms of Ageing and Development, 2010, 131, 536-543.	4.6	211
87	The p13 protein of human T cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 945-951.	1.0	27
88	PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release. Science, 2010, 330, 1247-1251.	12.6	360
89	Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochemical and Biophysical Research Communications, 2010, 391, 575-581.	2.1	17
90	Expression of the P2X7 Receptor Increases the Ca2+ Content of the Endoplasmic Reticulum, Activates NFATc1, and Protects from Apoptosis. Journal of Biological Chemistry, 2009, 284, 10120-10128.	3.4	95

#	Article	IF	Citations
91	Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12753-12758.	7.1	58
92	MAM: more than just a housekeeper. Trends in Cell Biology, 2009, 19, 81-88.	7.9	654
93	Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 335-344.	1.0	254
94	Ca2+ transfer from the ER to mitochondria: When, how and why. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1342-1351.	1.0	396
95	The origin of intermuscular adipose tissue and its pathophysiological implications. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E987-E998.	3. 5	215
96	Structural and functional link between the mitochondrial network and the endoplasmic reticulum. International Journal of Biochemistry and Cell Biology, 2009, 41, 1817-1827.	2.8	337
97	Deficiency of polycystic kidney disease-1 gene (PKD1) expression increases A3 adenosine receptors in human renal cells: Implications for cAMP-dependent signalling and proliferation of PKD1-mutated cystic cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 531-540.	3.8	22
98	Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. Journal of Molecular and Cellular Cardiology, 2009, 46, 781-788.	1.9	101
99	Mitochondria: From basic biology to cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2009, 46, 765-766.	1.9	13
100	The Mitochondrial Antioxidants MitoE ₂ and MitoQ ₁₀ Increase Mitochondrial Ca ²⁺ Efflux from the Organelle. Annals of the New York Academy of Sciences, 2008, 1147, 264-274.	3.8	36
101	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	10.3	1,025
102	The versatility of mitochondrial calcium signals: From stimulation of cell metabolism to induction of cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 808-816.	1.0	106
103	Modulation of intracellular Ca2+ signalling in HeLa cells by the apoptotic cell death enhancer PK11195. Biochemical Pharmacology, 2008, 76, 1628-1636.	4.4	24
104	Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium, 2008, 43, 184-195.	2.4	151
105	Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. Cell Calcium, 2008, 43, 602-614.	2.4	37
106	Role of SERCA1 Truncated Isoform in the Proapoptotic Calcium Transfer from ER to Mitochondria during ER Stress. Molecular Cell, 2008, 32, 641-651.	9.7	204
107	Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochemical and Biophysical Research Communications, 2008, 375, 501-505.	2.1	109
108	Imaging Calcium Dynamics Using Targeted Recombinant Aequorins. Cold Spring Harbor Protocols, 2008, 2008, pdb.top26.	0.3	1

#	Article	IF	CITATIONS
109	High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1226-1231.	7.1	243
110	Loss-of-Function Mutation of the <i>GPR40 </i> Sene Associates with Abnormal Stimulated Insulin Secretion by Acting on Intracellular Calcium Mobilization. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3541-3550.	3.6	61
111	p66Shc, oxidative stress and aging: Importing a lifespan determinant into mitochondria. Cell Cycle, 2008, 7, 304-308.	2.6	78
112	Bidirectional Ca ²⁺ -dependent control of mitochondrial dynamics by the Miro GTPase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20728-20733.	7.1	474
113	Peroxisomes as Novel Players in Cell Calcium Homeostasis. Journal of Biological Chemistry, 2008, 283, 15300-15308.	3.4	49
114	Ca2+ Signaling, Mitochondria and Cell Death. Current Molecular Medicine, 2008, 8, 119-130.	1.3	258
115	The role of Ca2 in the regulation of intracellular transport. , 2008, , 143-160.		1
116	The Endogenous Cannabinoid System Stimulates Glucose Uptake in Human Fat Cells via Phosphatidylinositol 3-Kinase and Calcium-Dependent Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4810-4819.	3.6	188
117	Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Human Molecular Genetics, 2007, 16, 431-444.	2.9	279
118	Mitochondrial Ca2+ and cell death. New Comprehensive Biochemistry, 2007, 41, 471-481.	0.1	0
119	Sphingosine 1-phosphate receptors modulate intracellular Ca2+ homeostasis. Biochemical and Biophysical Research Communications, 2007, 353, 268-274.	2.1	21
120	Control of Macroautophagy by Calcium, Calmodulin-Dependent Kinase Kinase- \hat{l}^2 , and Bcl-2. Molecular Cell, 2007, 25, 193-205.	9.7	961
121	Biosensors for the Detection of Calcium and pH. Methods in Cell Biology, 2007, 80, 297-325.	1.1	7 5
122	Protein Kinase C ß and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66 ^{Shc} . Science, 2007, 315, 659-663.	12.6	448
123	Chaperones as Parts of Organelle Networks. , 2007, 594, 64-77.		19
124	Differential recruitment of PKC isoforms in HeLa cells during redox stress. Cell Stress and Chaperones, 2007, 12, 291.	2.9	24
125	Mitochondria in Cell Life and Death. , 2007, , 145-158.		0
126	Microdomains of Intracellular Ca ²⁺ : Molecular Determinants and Functional Consequences. Physiological Reviews, 2006, 86, 369-408.	28.8	1,067

#	Article	IF	CITATIONS
127	Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochemical and Biophysical Research Communications, 2006, 348, 393-399.	2.1	25
128	Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells. Biochemical and Biophysical Research Communications, 2006, 350, 257-262.	2.1	13
129	Intracellular Evaluation of ER Targeting Elucidates a Mild Form of Inherited Coagulation Deficiency. Molecular Medicine, 2006, 12, 137-142.	4.4	6
130	Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. Journal of Cell Biology, 2006, 175, 901-911.	5.2	1,107
131	Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. Journal of Cell Biology, 2006, 174, 985-996.	5.2	90
132	Inhibitory Interaction of the Plasma Membrane Na+/Ca2+ Exchangers with the 14-3-3 Proteins. Journal of Biological Chemistry, 2006, 281, 19645-19654.	3.4	24
133	Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene, 2005, 24, 4921-4933.	5.9	254
134	Mitochondrial calcium signalling in cell death. FEBS Journal, 2005, 272, 4013-4022.	4.7	25
135	Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium, 2005, 37, 555-564.	2.4	38
136	A Novel Recombinant Plasma Membrane-targeted Luciferase Reveals a New Pathway for ATP Secretion. Molecular Biology of the Cell, 2005, 16, 3659-3665.	2.1	283
137	The Golgi Ca2+-ATPase KIPmr1p Function Is Required for Oxidative Stress Response by Controlling the Expression of the Heat-Shock Element HSP60 in Kluyveromyces lactis. Molecular Biology of the Cell, 2005, 16, 4636-4647.	2.1	31
138	Metformin Prevents Glucose-Induced Protein Kinase C-Â2 Activation in Human Umbilical Vein Endothelial Cells Through an Antioxidant Mechanism. Diabetes, 2005, 54, 1123-1131.	0.6	97
139	Nuclear Poly(ADP-ribose) Polymerase-1 Rapidly Triggers Mitochondrial Dysfunction. Journal of Biological Chemistry, 2005, 280, 17227-17234.	3.4	134
140	Inhibitory Interaction of the 14-3-3ϵ Protein with Isoform 4 of the Plasma Membrane Ca2+-ATPase Pump. Journal of Biological Chemistry, 2005, 280, 37195-37203.	3.4	67
141	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	2.1	242
142	Expression, Pharmacological Profile, and Functional Coupling of A2B Receptors in a Recombinant System and in Peripheral Blood Cells Using a Novel Selective Antagonist Radioligand, [3H]MRE 2029-F20. Molecular Pharmacology, 2005, 67, 2137-2147.	2.3	58
143	The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca2+-dependent pathway(s). Experimental Cell Research, 2005, 304, 391-406.	2.6	30
144	pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochemical and Biophysical Research Communications, 2005, 326, 799-804.	2.1	259

#	Article	IF	CITATIONS
145	Cleavage of the Plasma Membrane Na+/Ca2+ Exchanger in Excitotoxicity. Cell, 2005, 120, 275-285.	28.9	511
146	Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis. Cell, 2005, 122, 221-233.	28.9	1,041
147	Targeted Aequorins., 2005,, 112-123.		0
148	Bcl-2 and Bax Exert Opposing Effects on Ca2+ Signaling, Which Do Not Depend on Their Putative Pore-forming Region. Journal of Biological Chemistry, 2004, 279, 54581-54589.	3.4	98
149	The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis. Journal of Biological Chemistry, 2004, 279, 18440-18450.	3.4	116
150	Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. Journal of Cell Biology, 2004, 165, 223-232.	5.2	79
151	Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 119-131.	4.1	115
152	Chondrocyte protein with a poly-proline region (CHPPR) is a novel mitochondrial protein and promotes mitochondrial fission. Journal of Cellular Physiology, 2004, 201, 470-482.	4.1	25
153	Flirting in Little Space: The ER/Mitochondria Ca ²⁺ Liaison. Science Signaling, 2004, 2004, re1.	3.6	231
154	Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood?. FEBS Letters, 2004, 567, 111-115.	2.8	118
155	Drp-1-Dependent Division of the Mitochondrial Network Blocks Intraorganellar Ca2+ Waves and Protects against Ca2+-Mediated Apoptosis. Molecular Cell, 2004, 16, 59-68.	9.7	440
156	Mitochondrial Ca2+ homeostasis in health and disease. Biological Research, 2004, 37, 653-60.	3.4	46
157	Calcium Transport in Mitochondria. , 2004, , 261-266.		0
158	Calcium and apoptosis: facts and hypotheses. Oncogene, 2003, 22, 8619-8627.	5.9	439
159	When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nature Genetics, 2003, 34, 135-141.	21.4	85
160	The collagen-mitochondria connection. Nature Genetics, 2003, 35, 300-301.	21.4	9
161	Looking forward to seeing calcium. Nature Reviews Molecular Cell Biology, 2003, 4, 579-586.	37.0	187
162	Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells. Biochemical and Biophysical Research Communications, 2003, 301, 657-664.	2.1	24

#	Article	IF	Citations
163	The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochemical and Biophysical Research Communications, 2003, 306, 430-436.	2.1	89
164	Mitochondrial Ca2+ Uptake Requires Sustained Ca2+ Release from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2003, 278, 15153-15161.	3.4	79
165	Calcium mobilization from mitochondria in synaptic transmitter release. Journal of Cell Biology, 2003, 163, 441-443.	5.2	24
166	Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 Cells. Molecular Biology of the Cell, 2003, 14, 2655-2664.	2.1	124
167	Recombinant Expression of the Ca2+-sensitive Aspartate/Glutamate Carrier Increases Mitochondrial ATP Production in Agonist-stimulated Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 38686-38692.	3.4	138
168	Caspase-dependent Alterations of Ca2+ Signaling in the Induction of Apoptosis by Hepatitis B Virus X Protein. Journal of Biological Chemistry, 2003, 278, 31745-31755.	3.4	94
169	Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. Molecular Biology Intelligence Unit, 2003, , 105-125.	0.2	1
170	Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Research, 2003, 63, 541-6.	0.9	147
171	Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. Journal of Cell Biology, 2002, 159, 613-624.	5.2	400
172	A role for calcium in Bcl-2 action?. Biochimie, 2002, 84, 195-201.	2.6	46
173	Dynamics of Glucose-induced Membrane Recruitment of Protein Kinase C \hat{l}^2 II in Living Pancreatic Islet \hat{l}^2 -Cells. Journal of Biological Chemistry, 2002, 277, 37702-37710.	3.4	86
174	Sarcoplasmic reticulum: Turning morphological complexity into calcium signals. Rendiconti Lincei, 2002, 13, 325-336.	2.2	0
175	Targeting of reporter molecules to mitochondria to measure calcium, ATP, and pH. Methods in Cell Biology, 2001, 65, 353-380.	1.1	29
176	Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochemical Journal, 2001, 355, 1-12.	3.7	125
177	Molecular machinery and signaling events in apoptosis. Drug Development Research, 2001, 52, 558-570.	2.9	19
178	Proapoptotic plasma membrane pore: P2X7 receptor. Drug Development Research, 2001, 52, 571-578.	2.9	11
179	Mitochondria and calcium homeostasis: a tale of three luminescent proteins. Luminescence, 2001, 16, 67-71.	2.9	9

#	Article	IF	Citations
181	Intracellular Ca2+ pools in neuronal signalling. Current Opinion in Neurobiology, 2001, 11, 306-311.	4.2	111
182	Baseline Cytosolic Ca2+ Oscillations Derived from a Non-endoplasmic Reticulum Ca2+Store. Journal of Biological Chemistry, 2001, 276, 39161-39170.	3.4	51
183	Dense core secretory vesicles revealed as a dynamic Ca2+store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. Journal of Cell Biology, 2001, 155, 41-52.	5.2	188
184	Serca 1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis. Journal of Cell Biology, 2001, 153, 1301-1314.	5.2	87
185	Mitochondria and calcium homeostasis: a tale of three luminescent proteins. Luminescence, 2001, 16, 67-71.	2.9	1
186	Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochemical Journal, 2001, 355, 1.	3.7	92
187	Measuring Ca2+ in the Nucleoplasm of Intact Cells. , 2001, , 105-130.		0
188	The renaissance of mitochondrial calcium transport. FEBS Journal, 2000, 267, 5269-5273.	0.2	48
189	Mitochondria as allâ€round players of the calcium game. Journal of Physiology, 2000, 529, 37-47.	2.9	513
190	Regulation of mitochondrial metabolism by ER Ca 2+ release: an intimate connection. Trends in Biochemical Sciences, 2000, 25, 215-221.	7.5	192
191	Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells. Journal of Cell Biology, 2000, 148, 857-862.	5.2	435
192	Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods in Enzymology, 2000, 327, 440-456.	1.0	28
193	Glucose Generates Sub-plasma Membrane ATP Microdomains in Single Islet β-Cells. Journal of Biological Chemistry, 1999, 274, 13281-13291.	3.4	293
194	A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Medicine, 1999, 5, 951-954.	30.7	154
195	Symposia lectures. Journal of Biosciences, 1999, 24, 5-31.	1.1	0
196	Targeted recombinant aequorins: Tools for monitoring [Ca2+] in the various compartments of a living cell., 1999, 46, 380-389.		81
197	Imaging Green Fluorescent Proteins in Mammalian Cells. , 1999, , 327-350.		0
198	The New Green Fluorescent Protein Mutants and their Applications. , 1999, , 351-361.		0

#	Article	IF	CITATIONS
199	The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO Journal, 1998, 17, 5298-5308.	7.8	415
200	New light on mitochondrial calcium. BioFactors, 1998, 8, 243-253.	5.4	43
201	Digital imaging microscopy of living cells. Trends in Cell Biology, 1998, 8, 288-292.	7.9	87
202	Calcium and Organelles: A Two-Sided Story. Biochemical and Biophysical Research Communications, 1998, 253, 549-557.	2.1	24
203	Chapter 5: Targeting GFP to Organelles. Methods in Cell Biology, 1998, 58, 75-85.	1.1	42
204	Mitochondrial Ca2+ Signalling. , 1998, , 163-175.		0
205	BiP, a Major Chaperone Protein of the Endoplasmic Reticulum Lumen, Plays a Direct and Important Role in the Storage of the Rapidly Exchanging Pool of Ca2+. Journal of Biological Chemistry, 1997, 272, 30873-30879.	3.4	241
206	Ca2+ Homeostasis in the Endoplasmic Reticulum: Coexistence of High and Low [Ca2+] Subcompartments in Intact HeLa Cells. Journal of Cell Biology, 1997, 139, 601-611.	5.2	110
207	Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Molecular Microbiology, 1997, 26, 665-674.	2.5	128
208	Targeting aequorin and green fluorescent protein to intracellular organelles. Gene, 1996, 173, 113-117.	2.2	61
209	Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Current Biology, 1996, 6, 183-188.	3.9	225
210	A Role for Calcium Influx in the Regulation of Mitochondrial Calcium in Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 10753-10759.	3.4	173
211	[30] Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells. Methods in Enzymology, 1995, 260, 417-428.	1.0	77
212	Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Current Biology, 1995, 5, 635-642.	3.9	492
213	Transfected Aequorin in the Measurement of Cytosolic Ca2+ Concentration ([Ca2+]c). Journal of Biological Chemistry, 1995, 270, 9896-9903.	3.4	342
214	Targeting of aequorin for calcium monitoring in intracellular compartments. Luminescence, 1994, 9, 177-184.	0.0	7
215	Gene transfer into satellite cell from regenerating muscle: Bupivacaine allows \hat{l}^2 -gal transfection and expression in vitro and in vivo. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 131-133.	1.5	33
216	Targeting Recombinant Aequorin to Specific Intracellular Organelles. Methods in Cell Biology, 1994, 40, 339-358.	1,1	68

#	Article	IF	CITATIONS
217	Intracellular targeting of the photoprotein aequorin: A new approach for measuring, in living cells, Ca2+ concentrations in defined cellular compartments. Cytotechnology, 1993, 11, S44-S46.	1.6	23
218	Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 1993, 262, 744-747.	12.6	1,153
219	Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature, 1992, 358, 325-327.	27.8	902
220	Molecular defects in cytochrome oxidase in mitochondrial diseases. Journal of Bioenergetics and Biomembranes, 1988, 20, 353-364.	2.3	45
221	Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. FEBS Journal, 1987, 162, 239-249.	0.2	36
222	Endoplasmic Reticulum/Mitochondria Calcium Cross-Talk. Novartis Foundation Symposium, 0, , 122-139.	1.1	21