
Ji-Won Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO ₂ and Garnet-Li ₇ La ₃ Zr ₂ O ₁₂ . Chemistry of Materials, 2016, 28, 8051-8059.	3.2	373
2	Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 2016, 4, 703-750.	5.2	350
3	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	7.3	230
4	One-Dimensional RuO ₂ /Mn ₂ O ₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 2076-2083.	4.5	193
5	A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO ₂ /NiO Nanotubes. ACS Nano, 2016, 10, 11317-11326.	7.3	177
6	A Critical Review on Functionalization of Air athodes for Nonaqueous Li–O ₂ Batteries. Advanced Functional Materials, 2020, 30, 1808303.	7.8	132
7	Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano, 2020, 14, 14549-14578.	7.3	126
8	Few‣ayered WS ₂ Nanoplates Confined in Co, Nâ€Đoped Hollow Carbon Nanocages: Abundant WS ₂ Edges for Highly Sensitive Gas Sensors. Advanced Functional Materials, 2018, 28, 1802575.	7.8	93
9	Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS ₂ Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 28116-28121.	4.0	92
10	Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries. Scientific Reports, 2015, 5, 13862.	1.6	91
11	Formation of a Surficial Bifunctional Nanolayer on Nb ₂ O ₅ for Ultrastable Electrodes for Lithiumâ€Ion Battery. Small, 2017, 13, 1603610.	5.2	74
12	MOF derived ZnCo ₂ O ₄ porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. Journal of Materials Chemistry A, 2017, 5, 22717-22725.	5.2	69
13	Cobalt(ii) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3239.	5.2	68
14	Dimensional Effects of MoS ₂ Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. ACS Applied Materials & Interfaces, 2016, 8, 26758-26768.	4.0	62
15	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	8.2	58
16	Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrO _{<i>x</i>} Nanoparticle Catalysts for Stable Oxygen Evolution. Chemistry of Materials, 2018, 30, 5941-5950.	3.2	57
17	Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-Cycle-Life Lithium-Ion Batteries. ACS Nano, 2015, 9, 6717-6727.	7.3	55
18	Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe ₂ O ₃ Nanoparticles for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 6531-6540.	4.0	55

JI-WON JUNG

#	Article	IF	CITATIONS
19	Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries. Scientific Reports, 2017, 7, 45105.	1.6	49
20	Fast, Scalable Synthesis of Micronized Ge ₃ N ₄ @C with a High Tap Density for Excellent Lithium Storage. Advanced Functional Materials, 2017, 27, 1605975.	7.8	47
21	Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. ACS Applied Materials & Interfaces, 2018, 10, 20540-20549.	4.0	46
22	Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano, 2021, 15, 11218-11230.	7.3	45
23	Stress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability. ACS Nano, 2018, 12, 8169-8176.	7.3	42
24	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	3.6	39
25	Ensemble Design of Electrode–Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li–Metal Batteries. ACS Nano, 2021, 15, 4561-4575.	7.3	38
26	Electrospun materials for solar energy conversion: innovations and trends. Journal of Materials Chemistry C, 2016, 4, 10173-10197.	2.7	37
27	Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. Journal of Materials Chemistry A, 2018, 6, 2834-2846.	5.2	31
28	Recent Progress in 1D Air Electrode Nanomaterials for Enhancing the Performance of Nonaqueous Lithium–Oxygen Batteries. ChemNanoMat, 2016, 2, 616-634.	1.5	24
29	Black Tungsten Oxide Nanofiber as a Robust Support for Metal Catalysts: High Catalyst Loading for Electrochemical Oxygen Reduction. Small, 2021, 17, e2103755.	5.2	20
30	Gallium Nitride Nanoparticles Embedded in a Carbon Nanofiber Anode for Ultralong-Cycle-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44263-44269.	4.0	19
31	Free-Standing Carbon Nanofibers Protected by a Thin Metallic Iridium Layer for Extended Life-Cycle Li–Oxygen Batteries. ACS Applied Materials & Interfaces, 2020, 12, 55756-55765.	4.0	16
32	Low-temperature synthesis of tetragonal phase of hafnium oxide using polymer-blended nanofiber precursor. Applied Surface Science, 2020, 533, 147496.	3.1	15
33	Synergistic Interactions of Different Electroactive Components for Superior Lithium Storage Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 587-596.	4.0	13
34	Straightforward strategy toward a shape-deformable carbon-free cathode for flexible Li–air batteries in ambient air. Nano Energy, 2021, 83, 105821.	8.2	12
35	Reduced Graphene-Oxide-Encapsulated MoS2/Carbon Nanofiber Composite Electrode for High-Performance Na-Ion Batteries. Nanomaterials, 2021, 11, 2691.	1.9	10
36	Stable and High-Capacity Si Electrodes with Free-Standing Architecture for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 208-217.	2.5	9

#	Article	IF	CITATIONS
37	Multi-stacked electrodes employing aluminum coated tissue papers and non-oxidized graphene nanoflakes for high performance lithium–sulfur batteries. RSC Advances, 2016, 6, 60537-60545.	1.7	8
38	Investigation of Ordering on Oxygenâ€Deficient LiNi _{0.5} Mn _{1.5} O _{4â€î́} Thin Films for Boosting Electrochemical Performance in Allâ€Solidâ€State Thinâ€Film Batteries. Small, 2022, , 2201134.	5.2	3
39	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries. ChemSusChem, 2016, 9, 2007-2007.	3.6	2
40	Gas Sensors: Few‣ayered WS ₂ Nanoplates Confined in Co, Nâ€Doped Hollow Carbon Nanocages: Abundant WS ₂ Edges for Highly Sensitive Gas Sensors (Adv. Funct. Mater.) Tj ETQq0 0 (0 n g® T /Ov	erzłock 10 Tf
41	Real Time Observation of Initial Conversion Reaction of Co3O4 Nanoparticles Using Graphene Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1968-1969.	0.2	0