Weixing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978268/publications.pdf

Version: 2024-02-01

42 papers 2,512 citations

257101 24 h-index 42 g-index

42 all docs 42 docs citations

42 times ranked 2649 citing authors

#	Article	IF	CITATIONS
1	A Highly Effective Inorganic Composite Promoter: Synergistic Effect of Boric Acid and Calcium Hydroxide in Promoting Methane Hydrate Formation under Static Conditions. Industrial & Description of Engineering Chemistry Research, 2022, 61, 3775-3780.	1.8	2
2	Lignocellulose aerogel and amorphous silica nanoparticles from rice husks. Journal of Leather Science and Engineering, $2021, 3, .$	2.7	6
3	Facile synthesis of photoluminescent mesoporous silica. Advanced Composites and Hybrid Materials, 2021, 4, 815-818.	9.9	10
4	Dry hydrated potassium carbonate for effective CO ₂ capture. Dalton Transactions, 2020, 49, 3965-3969.	1.6	5
5	Chinese herbs: treasure troves for the discovery of environmentally friendly promoters for methane hydrate formation. Sustainable Energy and Fuels, 2020, 4, 5947-5951.	2.5	8
6	Boric acid: the first effective inorganic promoter for methane hydrate formation under static conditions. Sustainable Energy and Fuels, 2020, 4, 4478-4481.	2.5	11
7	Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nature Communications, 2020, 11, 5591.	5.8	202
8	CO ₂ Hydrate Formation Promoted by a Bio-friendly Amino Acid L ―Isoleucine. IOP Conference Series: Earth and Environmental Science, 2020, 474, 052054.	0.2	11
9	Design and Fabrication of Highly Photoluminescent Carbon-Incorporated Silica from Rice Husk Biomass. Industrial & Desired Chemistry Research, 2019, 58, 4688-4694.	1.8	7
10	Synthesis of green phosphors from highly active amorphous silica derived from rice husks. Journal of Materials Science, 2018, 53, 1824-1832.	1.7	23
11	Methane Storage in Biosilica-Supported Semiclathrates at Ambient Temperature and Pressure. IOP Conference Series: Materials Science and Engineering, 2018, 301, 012033.	0.3	1
12	Versatile Nanostructures from Rice Husk Biomass for Energy Applications. Angewandte Chemie - International Edition, 2018, 57, 13722-13734.	7.2	81
13	Vielfäige Nanostrukturen aus Reishülsenâ€Biomasse für Energieanwendungen. Angewandte Chemie, 2018, 130, 13914-13927.	1.6	8
14	Effective Capture of Carbon Dioxide Using Hydrated Sodium Carbonate Powders. Materials, 2018, 11, 183.	1.3	19
15	One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe ³⁺ Sensing. Industrial & Engineering Chemistry Research, 2018, 57, 9144-9150.	1.8	73
16	CO ₂ Hydrate Formation Promoted by a Natural Amino Acid <scp>l</scp> â€Methionine for Possible Application to CO ₂ Capture and Storage. Energy Technology, 2017, 5, 1195-1199.	1.8	99
17	Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass. Journal of Materials Chemistry B, 2017, 5, 4679-4689.	2.9	71
18	Luminescence Mechanism of Carbon-Incorporated Silica Nanoparticles Derived from Rice Husk Biomass. Industrial & Derived Research, 2017, 56, 5906-5912.	1.8	26

#	Article	IF	Citations
19	Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1434-1439.	4.0	236
20	Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. Journal of Power Sources, 2016, 306, 241-247.	4.0	103
21	Methane Storage in a Hydrated Form as Promoted by Leucines for Possible Application to Natural Gas Transportation and Storage. Energy Technology, 2015, 3, 815-819.	1.8	139
22	Photoluminescent mesoporous carbon-doped silica from rice husks. Materials Letters, 2015, 142, 280-282.	1.3	28
23	Knitting hypercrosslinked conjugated microporous polymers with external crosslinker. Polymer, 2015, 70, 336-342.	1.8	77
24	Synthesis of Gold Nanoparticles on Rice Husk Silica for Catalysis Applications. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 5656-5663.	1.8	47
25	Synthesis and colour prediction of stable pigments from rice husk biomass. Green Materials, 2015, 3, 10-14.	1.1	16
26	Methane storage in tea clathrates. Chemical Communications, 2014, 50, 1244-1246.	2.2	21
27	â€`Dry bases': carbon dioxide capture using alkaline dry water. Energy and Environmental Science, 2014, 7, 1786-1791.	15.6	42
28	Aqueous phase preparation of graphene with low defect density and adjustable layers. Chemical Communications, 2013, 49, 10835.	2.2	41
29	Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass. ACS Sustainable Chemistry and Engineering, 2013, 1, 254-259.	3.2	135
30	Gas storage in renewable bioclathrates. Energy and Environmental Science, 2013, 6, 105-107.	15.6	36
31	Synthesis of silicon complexes from rice husk derived silica nanoparticles. RSC Advances, 2012, 2, 9036.	1.7	26
32	Methane hydrates with a high capacity and a high formation rate promoted by biosurfactants. Chemical Communications, 2012, 48, 11638.	2.2	33
33	Silica Nanoparticles and Frameworks from Rice Husk Biomass. ACS Applied Materials & Amp; Interfaces, 2012, 4, 977-981.	4.0	186
34	Microencapsulation using an oil-in-water-in-air â€~dry water emulsion'. Chemical Communications, 2011, 47, 8253.	2.2	13
35	Harvesting silica nanoparticles from rice husks. Journal of Nanoparticle Research, 2011, 13, 6981-6990.	0.8	110
36	Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates. International Journal of Hydrogen Energy, 2011, 36, 1014-1026.	3.8	18

#	Article	IF	CITATION
37	Reaction/separation coupled equilibrium modeling of steam methane reforming in fluidized bed membrane reactors. International Journal of Hydrogen Energy, 2010, 35, 11798-11809.	3.8	12
38	Gas Storage in "Dry Water―and "Dry Gel―Clathrates. Langmuir, 2010, 26, 3186-3193.	1.6	154
39	Reversible Methane Storage in a Polymer-Supported Semi-Clathrate Hydrate at Ambient Temperature and Pressure. Chemistry of Materials, 2009, 21, 3810-3815.	3.2	45
40	Methane Storage in Dry Water Gas Hydrates. Journal of the American Chemical Society, 2008, 130, 11608-11609.	6.6	303
41	Synthesis and evaluation of sulphonated acetone–formaldehyde resin applied as dispersant of coal–water slurry. Energy Conversion and Management, 2007, 48, 204-209.	4.4	25
42	A Preliminary Study on Rice Husk Filled Polypropylene Composite. Materials Research Society Symposia Proceedings, 2000, 661, KK5.14.1.	0.1	3