Hartmut Herrmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/978258/hartmut-herrmann-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,644 438 125 71 h-index g-index citations papers 6.69 22,762 627 6.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
438	A statistic comparison of multi-element analysis of low atmospheric fine particles (PM) using different spectroscopy techniques <i>Journal of Environmental Sciences</i> , 2022 , 114, 194-203	6.4	2
437	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl <i>Nature Communications</i> , 2022 , 13, 939	17.4	2
436	Synthesis and Characterization of Atmospherically Relevant Hydroxy Hydroperoxides. <i>Atmosphere</i> , 2022 , 13, 507	2.7	O
435	Molecular distributions of dicarboxylic acids, oxocarboxylic acids, and ∃-dicarbonyls in aerosols over Tuoji Island in the Bohai Sea: Effects of East Asian continental outflow. <i>Atmospheric Research</i> , 2022 , 106	5∮5 1 4	
434	Leaching material from Antarctic seaweeds and penguin guano affects cloud-relevant aerosol production <i>Science of the Total Environment</i> , 2022 , 154772	10.2	
433	Evaluation of modelled LOTOS-EUROS with observational based PM10 source attribution. <i>Atmospheric Environment: X</i> , 2022 , 100173	2.8	1
432	The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 5577-5601	6.8	1
431	High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water 🗈 case study at the tropical Atlantic Ocean. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 5725-5742	6.8	O
430	Hydrotrioxide (ROOOH) formation in the atmosphere. <i>Science</i> , 2022 , 376, 979-982	33.3	4
429	European Aerosol Phenomenology - 8: Harmonised Source Apportionment of Organic Aerosol using 22 Year-long ACSM/AMS Datasets. <i>Environment International</i> , 2022 , 107325	12.9	1
428	Biogenic Emissions and Urban Air Quality. Springer Proceedings in Complexity, 2021, 11-17	0.3	
427	Box Model Intercomparison of Cloud Chemistry. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126,	4.4	3
426	Particle hygroscopicity inhomogeneity and its impact on reactive uptake. <i>Science of the Total Environment</i> , 2021 , 151364	10.2	O
425	Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. <i>Environmental Science & Environmental Scienc</i>	10.3	2
424	Overestimation of Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO2. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 206-211	11	6
423	Strong Deviations from Thermodynamically Expected Phase Partitioning of Low-Molecular-Weight Organic Acids during One Year of Rural Measurements. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 500-515	53.2	4
422	Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective transfer and high enrichments. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 4267-4283	6.8	2

(2021-2021)

421	reactions of organic species with four, or more, carbon atoms (C& t;sub>4& t;/sub>). Atmospheric Chemistry and Physics, 2021 , 21, 4797-4808	6.8	15
420	Photolytic radical persistence due to anoxia in viscous aerosol particles. <i>Nature Communications</i> , 2021 , 12, 1769	17.4	15
419	Source apportionment and impact of long-range transport on carbonaceous aerosol particles in central Germany during HCCT-2010. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3667-3684	6.8	2
418	Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1032-1047	3.2	4
417	Guaiacol Nitration in a Simulated Atmospheric Aerosol with an Emphasis on Atmospheric Nitrophenol Formation Mechanisms. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1083-1093	3.2	5
416	Trimethylamine Outruns Terpenes and Aromatics in Atmospheric Autoxidation. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4454-4466	2.8	4
415	Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of HO and Particulate Sulfate in the Winter North China Plain. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	4
414	Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry. <i>Journal of Separation Science</i> , 2021 , 44, 2343-23	3 37	O
413	Sea Spray Aerosol Chamber Study on Selective Transfer and Enrichment of Free and Combined Amino Acids. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1564-1574	3.2	1
412	Aromatic Carbonyl and Nitro Compounds as Photosensitizers and Their Photophysical Properties in the Tropospheric Aqueous Phase. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5078-5095	2.8	1
411	Importance of secondary organic aerosol formation of <i>\(\textit{B}\)\(\textit{L}\)\(</i>	6.8	2
410	The Importance of the Representation of DMS Oxidation in Global Chemistry-Climate Simulations. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL094068	4.9	2
409	T- and pH-Dependent Kinetics of the Reactions of IDH(aq) with Glutaric and Adipic Acid for Atmospheric Aqueous-Phase Chemistry. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 1854-1864	3.2	1
408	Terrestrial or marine Indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7 N. Atmospheric Chemistry and Physics, 2021, 21, 11613-11636	6.8	3
407	Opinion: The germicidal effect of ambient air (open-air factor) revisited. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13011-13018	6.8	3
406	Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21,	6.8	14
405	Reaction Kinetics of Green Leaf Volatiles with Sulfate, Hydroxyl, and Nitrate Radicals in Tropospheric Aqueous Phase. <i>Environmental Science & Environmental Science & Environ</i>	10.3	3
404	Release of inhalable particles and viable microbes to the air during packaging peeling: Emission profiles and mechanisms. <i>Environmental Pollution</i> , 2021 , 285, 117338	9.3	1

403	Concerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud droplets. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 163-181	6.8	9
402	Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 315-338	6.8	9
401	First insights into northern Africa high-altitude background aerosol chemical composition and source influences. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 18147-18174	6.8	
400	Capability of CI-Orbitrap for Gas-Phase Analysis in Atmospheric Chemistry: A Comparison with the CI-APi-TOF Technique. <i>Analytical Chemistry</i> , 2020 , 92, 8142-8150	7.8	5
399	The Acidity of Atmospheric Particles and Clouds. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4809-488	86 .8	165
398	Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level IPart 2: Ice-nucleating particles in air, cloud and seawater. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1451-14	68 ⁸	24
397	Marine organic matter in the remote environment of the Cape Verde islands Ian introduction and overview to the MarParCloud campaign. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6921-6951	6.8	14
396	Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level Part 1: Particle number size distribution, cloud condensation nuclei and their origins. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1431-1449	6.8	8
395	Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 391-407	6.8	8
394	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 409-429	6.8	10
393	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1233-1254	6.8	26
392	Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. <i>Environmental Science & Environmental Env</i>	3 7 82	49
391	Seawater analysis by ambient mass-spectrometry-based seaomics. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6243-6257	6.8	2
390	Multiphase MCMIAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6725-6747	6.8	7
389	Complexation of Fe(III)/Catechols in atmospheric aqueous phase and the consequent cytotoxicity assessment in human bronchial epithelial cells (BEAS-2B). <i>Ecotoxicology and Environmental Safety</i> , 2020 , 202, 110898	7	2
388	Concerted measurements of free amino acids at the Cape Verde Islands: High enrichments in submicron sea spray aerosol particles and cloud droplets 2020 ,		3
387	Formation of Toxic Unsaturated Multifunctional and Organosulfur Compounds From the Photosensitized Processing of Fluorene and DMSO at the Air-Water Interface. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031839	4.4	10
386	Atmospheric HULISIIn Different Environments: Polarities, Molecular Sizes, and Sources Suggest More Than 50% Are Not Humic-likeII <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 272-282	3.2	3

(2020-2020)

385	Evolution of Indoor Cooking Emissions Captured by Using Secondary Electrospray Ionization High-Resolution Mass Spectrometry. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 76-81	11	16
384	pH- and Temperature-Dependent Kinetics of the Oxidation Reactions of OH with Succinic and Pimelic Acid in Aqueous Solution. <i>Atmosphere</i> , 2020 , 11, 320	2.7	5
383	Chemical Characterization of Marine Aerosols in a South Mediterranean Coastal Area Located in Bou Ismal, Algeria. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 2448-2473	4.6	2
382	Treatment of non-ideality in the SPACCIM multiphase model IPart 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 103	51 ⁶ 103	7⊅
381	Role of the dew water on the ground surface in HONO distribution: a case measurement in Melpitz. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13069-13089	6.8	6
380	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII ©riegee intermediates. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13497-13519	6.8	22
379	The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13735-13751	6.8	4
378	Application of TXRF in monitoring trace metals in particulate matter and cloud water. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 4773-4790	4	9
377	Multi-year ACSM measurements at the central European research station Melpitz (Germany) Part : Instrument robustness, quality assurance, and impact of upper size cutoff diameter. Atmospheric Measurement Techniques, 2020, 13, 4973-4994	4	8
376	CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-MUSCAT(5.04e). <i>Geoscientific Model Development</i> , 2020 , 13, 2587-2609	6.3	4
375	A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) Itombined with HPAEC-PAD. <i>Ocean Science</i> , 2020 , 16, 817-830	4	3
374	Separation and quantification of imidazoles in atmospheric particles using LC-Orbitrap-MS. <i>Journal of Separation Science</i> , 2020 , 43, 577-589	3.4	5
373	The MILAN Campaign: Studying Diel Light Effects on the AirBea Interface. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E146-E166	6.1	8
372	OH radicals reactivity towards phenol-related pollutants in water: temperature dependence of the rate constants and novel insights into the [OH-phenol] dduct formation. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 1324-1332	3.6	9
371	SO formation and peroxy radical isomerization in the atmospheric reaction of OH radicals with dimethyl disulfide. <i>Chemical Communications</i> , 2020 , 56, 13634-13637	5.8	3
370	Inorganic composition and occult deposition of frost collected under severe polluted area in winter in the North China Plain. <i>Science of the Total Environment</i> , 2020 , 722, 137911	10.2	2
369	Five-Membered Heterocycles as Potential Photosensitizers in the Tropospheric Aqueous Phase: Photophysical Properties of Imidazole-2-carboxaldehyde, 2-Furaldehyde, and 2-Acetylfuran. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 10029-10039	2.8	2
368	A More Important Role for the Ozone-S(IV) Oxidation Pathway Due to Decreasing Acidity in Clouds. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD033220	4.4	6

367	Variations of the aerosol chemical composition during Asian dust storm at Dushanbe, Tajikistan. <i>E3S Web of Conferences</i> , 2019 , 99, 03007	0.5	2
366	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy 2019 ,		1
365	2D Liquid Chromatographic Fractionation with Ultra-high Resolution MS Analysis Resolves a Vast Molecular Diversity of Tropospheric Particle Organics. <i>Environmental Science & Environmental Science &</i>	10.3	20
364	OH-Initiated Oxidation of Imidazoles in Tropospheric Aqueous-Phase Chemistry. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 1505-1513	2.8	11
363	Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong 2019 ,		1
362	The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations. <i>Aerosol Science and Technology</i> , 2019 , 53, 830-842	3.4	25
361	A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources. <i>Journal of Atmospheric Chemistry</i> , 2019 , 76, 115-132	3.2	4
360	First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions. <i>Communications Chemistry</i> , 2019 , 2,	6.3	28
359	Improving the accuracy and precision of broadband optical cavity measurements. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2019 , 218, 178-183	4.4	4
358	Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 5176-5186	10.3	30
357	Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 281-298	4	3
356	EURODELTA III exercise: An evaluation of air quality models apacity to reproduce the carbonaceous aerosol. <i>Atmospheric Environment: X</i> , 2019 , 2, 100018	2.8	7
355	Aliphatic amines at the Cape Verde Atmospheric Observatory: Abundance, origins and sea-air fluxes. <i>Atmospheric Environment</i> , 2019 , 203, 183-195	5.3	14
354	Kinetic and Theoretical Study of the Atmospheric Aqueous-Phase Reactions of OH Radicals with Methoxyphenolic Compounds. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 7828-7838	2.8	20
353	Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LCHRMS/MS: contrasting summertime rural Germany and the North China Plain. <i>Environmental Chemistry</i> , 2019 , 16, 333	3.2	20
352	Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9209-9239	6.8	15
351	Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NO in Guangzhou, China. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1393-1402	4.3	23
350	Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond Samples. <i>Environmental Science & Environmental Sc</i>	10.3	10

349	Fast Peroxy Radical Isomerization and OH Recycling in the Reaction of OH Radicals with Dimethyl Sulfide. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 6478-6483	6.4	32	
348	Near-Explicit Multiphase Modeling of Halogen Chemistry in a Mixed Urban and Maritime Coastal Area. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2452-2471	3.2	6	
347	New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 143	35 <mark>9-</mark> 14	364	
346	Marine organic matter in the remote environment of the Cape Verde Islands IAn introduction and overview to the MarParCloud campaign 2019 ,		3	
345	Approaches for identifying PM source types and source areas at a remote background site of South China in spring. <i>Science of the Total Environment</i> , 2019 , 691, 1320-1327	10.2	14	
344	The Acidity of Atmospheric Particles and Clouds 2019 ,		8	
343	Seawater Analysis by Ambient Mass Spectrometry-Based Seaomics and Implications on Secondary Organic Aerosol Formation 2019 ,		1	
342	Aqueous-Phase Oxidation of -Elsoprene Epoxydiol by Hydroxyl Radicals and Its Impact on Atmospheric Isoprene Processing. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 10599-10608	2.8	9	
341	Enhanced Chlorine and Bromine Atom Activation by Hydrolysis of Halogen Nitrates from Marine Aerosols at Polluted Coastal Areas. <i>Environmental Science & Environmental Science</i>	10.3	8	
340	Trans-boundary PM10: Quantifying impact and sources during winter 2016/17 in eastern Germany. <i>Atmospheric Environment</i> , 2019 , 200, 119-130	5.3	11	
339	The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, 841-871	6.1	85	
338	Bildung von Aufbauprodukten aus den Selbst- und Kreuzreaktionen von RO2-Radikalen in der Atmosphæ. <i>Angewandte Chemie</i> , 2018 , 130, 3882-3886	3.6	2	
337	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2853-2881	6.8	62	
336	Competition kinetics of OH radical reactions with oxygenated organic compounds in aqueous solution: rate constants and internal optical absorption effects. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10939-10948	3.6	12	
335	Oxidation of substituted aromatic hydrocarbons in the tropospheric aqueous phase: kinetic mechanism development and modelling. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10960-10977	3.6	33	
334	Carbon and hydrogen isotope fractionation of phthalate esters during degradation by sulfate and hydroxyl radicals. <i>Chemical Engineering Journal</i> , 2018 , 347, 111-118	14.7	25	
333	Accretion Product Formation from Self- and Cross-Reactions of RO Radicals in the Atmosphere. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3820-3824	16.4	88	
332	Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, and reaction mechanisms. <i>Water Research</i> , 2018 , 135, 95-103	12.5	10	

331	Sensitivity analysis of observational nudging methodology to reduce error in wind resource assessment (WRA) in the North Sea. <i>Renewable Energy</i> , 2018 , 120, 446-456	8.1	3
330	Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. <i>Atmospheric Environment</i> , 2018 , 176, 60-70	5.3	25
329	Bed flow photoreactor experiments to assess the photocatalytic nitrogen oxides abatement under simulated atmospheric conditions. <i>Applied Catalysis B: Environmental</i> , 2018 , 231, 161-172	21.8	21
328	Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany IA five-year study. <i>Journal of Atmospheric Chemistry</i> , 2018 , 75, 33-70	3.2	25
327	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i>∃</i>-dicarbonyls in PM_{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10	6.8 741-10	19 1 758
326	Organic Composition, Chemistry, and Photochemistry of Urban Film in Leipzig, Germany. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 935-945	3.2	11
325	Chemical Transformation of Methanesulfonic Acid and Sodium Methanesulfonate through Heterogeneous OH Oxidation. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 895-903	3.2	13
324	Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate. <i>Chemosphere</i> , 2018 , 212, 133-142	8.4	10
323	Modelling Multiphase Aerosol-Cloud Processing with the 3-D CTM COSMO-MUSCAT: Application for Cloud Events During HCCT-2010. <i>Springer Proceedings in Complexity</i> , 2018 , 587-592	0.3	1
322	Characterizing chemical transformation of organophosphorus compounds by C and H stable isotope analysis. <i>Science of the Total Environment</i> , 2018 , 615, 20-28	10.2	25
321	Simulation of atmospheric organic aerosol using its volatility bxygen-content distribution during the PEGASOS 2012 campaign. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10759-10772	6.8	1
320	Source apportionment of the organic aerosol over the Atlantic Ocean from 53°LN to 53°LS: significant contributions from marine emissions and long-range transport. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 18043-18062	6.8	18
319	IUPAC in the (real) clouds. <i>Chemistry International</i> , 2018 , 40, 10-13	1.6	1
318	Tropospheric Aqueous-Phase OH Oxidation Chemistry: Current Understanding, Uptake of Highly Oxidized Organics and Its Effects. <i>ACS Symposium Series</i> , 2018 , 49-85	0.4	11
317	Simulation of Atmospheric Organic Aerosol using its Volatility-Oxygen Content Distribution during the PEGASOS 2012 campaign 2018 ,		1
316	Source apportionment of the submicron organic aerosols over the Atlantic Ocean from 53 ^{ll} N to 53 ^{ll} S using HR-ToF-AMS 2018 ,		1
315	The influence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements. <i>Atmospheric Environment</i> , 2018 , 195, 141-148	5.3	15
314	Underestimated contribution of HONO to indoor OH radicals: an emerging concern. <i>Science Bulletin</i> , 2018 , 63, 1383-1384	10.6	4

313	Aqueous-Phase Oxidation of Terpene-Derived Acids by Atmospherically Relevant Radicals. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9233-9241	2.8	12
312	Accretion Product Formation from Ozonolysis and OH Radical Reaction of ⊞-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene. <i>Environmental Science & Environmental Science & Env</i>	10.3	48
311	Indoor (Photo)chemistry in China and Resulting Health Effects. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 10909-10910	10.3	5
310	Self-charging of identical grains in the absence of an external field. <i>Scientific Reports</i> , 2017 , 7, 39996	4.9	29
309	The Essential Role for Laboratory Studies in Atmospheric Chemistry. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 2519-2528	10.3	55
308	Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain. <i>Atmospheric Environment</i> , 2017 , 164, 259-269	5.3	11
307	Two-Dimensional Offline Chromatographic Fractionation for the Characterization of Humic-Like Substances in Atmospheric Aerosol Particles. <i>Environmental Science & Environmental Science & Environment</i>	id70³	10
306	Latitudinal and Seasonal Distribution of Particulate MSA over the Atlantic using a Validated Quantification Method with HR-ToF-AMS. <i>Environmental Science & Environmental Sci</i>	10.3	31
305	Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13387-13392	16.4	26
304	Tropospheric Aqueous-Phase Oxidation of Isoprene-Derived Dihydroxycarbonyl Compounds. Journal of Physical Chemistry A, 2017, 121, 6460-6470	2.8	16
303	Uptake of nitric acid, ammonia, and organics in orographic clouds: mass spectrometric analyses of droplet residual and interstitial aerosol particles. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1571-159	9 5 .8	20
302	Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1653-1672	6.8	100
301	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2103-2162	6.8	206
300	A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3929-3943	6.8	6
299	Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12253-12267	6.8	2
298	Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh[2014 field study. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1453-1469	6.8	29
297	Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9885-9896	6.8	38
296	The influence of environmental drivers on the enrichment of organic carbon in the sea surface microlayer and in submicron aerosol particles Imeasurements from the Atlantic Ocean. <i>Elementa</i> ,	3.6	22

295	Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops. <i>Atmosphere</i> , 2017 , 8, 138	2.7	43
294	The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	90
293	Different Pathways of the Formation of Highly Oxidized Multifunctional Organic Compounds (HOMs) from the Gas-Phase Ozonolysis of Ecaryophyllene 2016 ,		1
292	Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. <i>Atmospheric Environment</i> , 2016 , 143, 1-14	5.3	58
291	Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. <i>Atmospheric Environment</i> , 2016 , 145, 115-127	5.3	54
290	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 7735-7744	4.9	119
289	Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2971-2	983	43
288	Effect of varying experimental conditions on the viscosity of <i>∃</i>-pinene derived secondary organic material. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6027-6040	6.8	68
287	Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of <i></i>-caryophyllene. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9831-9845	6.8	15
286	Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3185-3205	6.8	42
285	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8095-8108	6.8	34
284	Variation of CCN activity during new particle formation events in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8593-8607	6.8	48
283	Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10879-10897	7 ^{6.8}	27
282	A new source of methylglyoxal in the aqueous phase. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2689	-2.802	9
281	Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmospheric Chemistry and Physics, 2016, 16, 505-524	6.8	38
280	New and Emerging Technologies of Societal Relevance: Impact on Air Quality and Climate. <i>Chemie-Ingenieur-Technik</i> , 2016 , 88, 1257-1258	0.8	
279	First Quantification of Imidazoles in Ambient Aerosol Particles: Potential Photosensitizers, Brown Carbon Constituents, and Hazardous Components. <i>Environmental Science & Environmental Science & Env</i>	10.3	55
278	Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000. <i>Faraday Discussions</i> , 2016 , 189, 291-315	3.6	22

277	On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China. <i>Atmospheric Environment</i> , 2016 , 127, 55-60	5.3	26
276	Highly Oxidized RO2 Radicals and Consecutive Products from the Ozonolysis of Three Sesquiterpenes. <i>Environmental Science & Environmental Science & En</i>	10.3	33
275	Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires. <i>Atmospheric Environment</i> , 2016 , 130, 54-63	5.3	27
274	Monoterpene SOA © Contribution of first-generation oxidation products to formation and chemical composition. <i>Atmospheric Environment</i> , 2016 , 130, 136-144	5.3	49
273	Treatment of non-ideality in the SPACCIM multiphase model IPart 1: Model development. <i>Geoscientific Model Development</i> , 2016 , 9, 247-281	6.3	6
272	Regional Scale Dispersion Modelling of Amines from Industrial CCS Processes with COSMO-MUSCAT. <i>Springer Proceedings in Complexity</i> , 2016 , 259-263	0.3	
271	Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China 2016 ,		3
270	Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the FBEACh 2014 field study 2016 ,		1
269	Impact of photocatalytic remediation of pollutants on urban air quality. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 1	5.8	25
268	Verbessert Photokatalyse die Luftqualite. Nachrichten Aus Der Chemie, 2016, 64, 613-616	0.1	
267	Competitive Counterion Binding Regulates the Aggregation Onset of Vimentin Intermediate Filaments. <i>Israel Journal of Chemistry</i> , 2016 , 56, 614-621	3.4	14
266	Hydroxyl radical-induced formation of highly oxidized organic compounds. <i>Nature Communications</i> , 2016 , 7, 13677	17.4	124
265	The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. <i>Biomicrofluidics</i> , 2016 , 10, 024108	3.2	20
264	Highly Oxidized Second-Generation Products from the Gas-Phase Reaction of OH Radicals with Isoprene. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 10150-10159	2.8	16
263	A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 15250-61	5.1	6
262	Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis ([13)C and [2)H). Science of the Total Environment, 2016, 542, 484-94	10.2	25
261	An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11776-11781	11.5	113
260	Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. <i>Environmental Science & Environmental Science & Environme</i>	10.3	110

259	Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. <i>Journal of Environmental Management</i> , 2015 , 155, 136-44	7.9	35
258	Chemical properties of HULIS from three different environments. <i>Journal of Atmospheric Chemistry</i> , 2015 , 72, 65-80	3.2	25
257	Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. <i>Chemical Reviews</i> , 2015 , 115, 4259-334	68.1	326
256	Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface. <i>Environmental Science & Environmental </i>	10.3	75
255	On-road measurements of NMVOCs and NO x : Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center. <i>Atmospheric Environment</i> , 2015 , 122, 799-807	5.3	23
254	Assembly of Simple Epithelial Keratin Filaments: Deciphering the Ion Dependence in Filament Organization. <i>Biomacromolecules</i> , 2015 , 16, 3313-21	6.9	16
253	Chemistry of Urban Grime: Inorganic Ion Composition of Grime vs Particles in Leipzig, Germany. <i>Environmental Science & Environmental </i>	10.3	29
252	Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ⊞ 2 K. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 11658-69	3.6	21
251	Investigation of humic substance photosensitized reactions via carbon and hydrogen isotope fractionation. <i>Environmental Science & Environmental Scien</i>	10.3	26
250	Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. <i>Building and Environment</i> , 2015 , 84, 125-133	6.5	59
249	Kinetics of nitrosamine and amine reactions with NO 3 radical and ozone related to aqueous particle and cloud droplet chemistry. <i>Atmospheric Research</i> , 2015 , 151, 64-71	5.4	8
248	Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface. <i>Scientific Reports</i> , 2015 , 5, 12741	4.9	66
247	Trace metal characterization of aerosol particles and cloud water during HCCT 2010. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8751-8765	6.8	34
246	The influence of clouds on radical concentrations: observations and modelling studies of HO_x during the Hill Cap Cloud Thuringia (HCCT) campaign in 2010. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3289-3301	6.8	21
245	Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13071-13083	6.8	19
244	ACTRIS ACSM intercomparison Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. <i>Atmospheric Measurement Techniques</i> , 2015, 8, 5063-5087	4	79
243	Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 2409-2416	4	6
242	ACTRIS ACSM intercomparison Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. <i>Atmospheric Measurement Techniques</i> 2015, 8, 2555-2576	4	92

241	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7123-8	11.5	260
240	ACTRIS ACSM intercomparison IPart 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers 2015 ,		7
239	Photocatalytic abatement results from a model street canyon. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18185-96	5.1	33
238	Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 10336	6 2 48	71
237	Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences. <i>Journal of Atmospheric Chemistry</i> , 2015 , 72, 105-125	3.2	21
236	Multiphase chemistry of glyoxal: revised kinetics of the alkyl radical reaction with molecular oxygen and the reaction of glyoxal with OH, NO3, and SO4- in aqueous solution. <i>Environmental Science & Environmental Science</i>	10.3	27
235	H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature. <i>Atmospheric Environment</i> , 2014 , 89, 603-612	5.3	81
234	Competing atmospheric reactions of CH2OO with SO2 and water vapour. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 19130-6	3.6	79
233	Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles. <i>Environmental Science & Environmental S</i>	10.3	52
232	Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. <i>Nature Photonics</i> , 2014 , 8, 775-778	33.9	158
231	Atmospheric peroxides in a polluted subtropical environment: seasonal variation, sources and sinks, and importance of heterogeneous processes. <i>Environmental Science & Environmental Science & Enviro</i>	50 ^{0.3}	44
230	2-hydroxyterpenylic acid: an oxygenated marker compound for \exists -pinene secondary organic aerosol in ambient fine aerosol. <i>Environmental Science & Environmental & Environment</i>	10.3	23
229	Modeling the multiphase processing of an urban and a rural air mass with COSMOMUSCAT. <i>Urban Climate</i> , 2014 , 10, 720-731	6.8	4
228	Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid and acrylic acidkinetics and product studies. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6257-72	3.6	54
227	On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 3913-3928	6.8	47
226	Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4503-4514	6.8	53
225	Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9105-9128	6.8	13
224	Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10145-10162	6.8	39

223	Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO₂ and organic acids. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1214	13:921	53 ⁶
222	Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2245-2266	6.8	18
221	Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2525-2539	6.8	101
220	Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 719-736	6.8	27
219	Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 7859-7868	6.8	21
218	Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8883	3-8 ⁸ 04	56
217	In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4219-4235	6.8	23
216	Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4531-4538	6.8	17
215	Schnelle Autoxidation bildet hochoxidierte RO2-Radikale in der AtmosphEe. <i>Angewandte Chemie</i> , 2014 , 126, 14825-14829	3.6	7
214	Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14596-600	16.4	147
213	Compound specific stable isotope analysis (CSIA) to characterize transformation mechanisms of ∃-hexachlorocyclohexane. <i>Journal of Hazardous Materials</i> , 2014 , 280, 750-7	12.8	40
212	Determination of nitrophenolic compounds from atmospheric particles using hollow-fiber liquid-phase microextraction and capillary electrophoresis/mass spectrometry analysis. <i>Electrophoresis</i> , 2014 , 35, 1353-61	3.6	16
211	Emerging areas in atmospheric photochemistry. <i>Topics in Current Chemistry</i> , 2014 , 339, 1-53		16
210	The Influence of Cloud Chemical Processes on the Formation of Secondary Particulate Matter. <i>Springer Proceedings in Complexity</i> , 2014 , 97-101	0.3	
209	Mechanism development and modelling of tropospheric multiphase halogen chemistry: The CAPRAM Halogen Module 2.0 (HM2). <i>Journal of Atmospheric Chemistry</i> , 2013 , 70, 19-52	3.2	20
208	Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz influence of air mass inflow, weather conditions and season. <i>Journal of Atmospheric Chemistry</i> , 2013 , 70, 165-195	3.2	60
207	The effect of surgical and transcatheter aortic valve replacement on mitral annular anatomy. <i>Annals of Thoracic Surgery</i> , 2013 , 95, 614-9	2.7	18
206	Comprehensive chemical characterisation of size-segregated PM10 in Dresden and estimation of changes due to global warming. <i>Atmospheric Environment</i> , 2013 , 75, 365-373	5.3	4

205	Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany. <i>Atmospheric Environment</i> , 2013 , 74, 102-109	5.3	30
204	Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i. <i>Journal of Atmospheric Chemistry</i> , 2013 , 70, 221-256	3.2	45
203	Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. <i>Science</i> , 2013 , 340, 727	- 39 .3	224
202	Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. <i>Faraday Discussions</i> , 2013 , 165, 237-59	3.6	78
201	Formation of secondary organic aerosol marker compounds from the photooxidation of isoprene and isoprene-derived alkene diols under low-NO(x) conditions. <i>Faraday Discussions</i> , 2013 , 165, 261-72	3.6	4
200	Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2013 , 268, 24-36	4.7	58
199	Effects of Fe(III)-concentration, speciation, excitation-wavelength and light intensity on the quantum yield of iron(III)-oxalato complex photolysis. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2013 , 255, 41-49	4.7	66
198	Ozone-driven secondary organic aerosol production chain. <i>Environmental Science & Environmental Scienc</i>	10.3	24
197	An improved method for the quantification of SOA bound peroxides. <i>Atmospheric Environment</i> , 2013 , 67, 365-369	5.3	33
196	Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene. <i>Atmospheric Environment</i> , 2013 , 79, 553-560	5.3	20
195	Nitro- and Nitro-Oxy-Compounds in Multiphase Particle Chemistry: Field and Analytical Studies. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2013 , 185-193	0.3	1
194	Measurement of areal density in the ablators of inertial-confinement-fusion capsules via detection of ablator (n, n? Igamma-ray emission. <i>Physics of Plasmas</i> , 2013 , 20, 042705	2.1	24
193	Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4801-4814	6.8	44
192	Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 1023-1037	6.8	32
191	Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the Polarstern cruise ANT XXVII/4. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11791-11802	6.8	17
190	Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6637-664	l 6 .8	22
189	Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7983-7996	6.8	78
188	Hollow fibre liquid-phase microextraction of functionalised carboxylic acids from atmospheric particles combined with capillary electrophoresis/mass spectrometric analysis. <i>Journal of Chromatography A.</i> 2012 , 1267, 178-88	4.5	14

187	Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). <i>Chemical Society Reviews</i> , 2012 , 41, 6684-704	58.5	214
186	Laboratory kinetic and mechanistic studies on the OH-initiated oxidation of acetone in aqueous solution. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 6317-26	2.8	49
185	Chemical characterization of dissolved organic compounds from coastal sea surface microlayers (Baltic Sea, Germany). <i>Environmental Science & Environmental Science & Environm</i>	10.3	40
184	Hygroscopic growth and CCN activity of HULIS from different environments. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		28
183	Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO2. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2892-2896	6.4	78
182	Ultrafine and Fine Particles in the Atmosphere E ampling, Chemical Characterization and Sources. <i>Chemie-Ingenieur-Technik</i> , 2012 , 84, 1130-1136	0.8	2
181	Size-segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage impactor: a six year study. <i>Journal of Atmospheric Chemistry</i> , 2012 , 69, 127-157	3.2	36
180	Alternative pathway for atmospheric particles growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 6840-4	11.5	78
179	Mineral dust photochemistry induces nucleation events in the presence of SO2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20842-7	11.5	101
178	A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2381-2397	6.8	70
177	Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9855-9863	6.8	3
176	Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010). <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 11679-11694	6.8	7
175	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13061-13143	6.8	231
174	Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12579-12599	6.8	67
173	Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12697-12713	6.8	40
172	Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12617-12626	6.8	72
171	A study to discriminate local, urban and regional source contributions to the particulate matter concentrations in the city of Dresden, Germany. <i>Journal of Atmospheric Chemistry</i> , 2011 , 68, 199-231	3.2	13
170	Denuder sampling techniques for the determination of gas-phase carbonyl compounds: a comparison and characterisation of in situ and ex situ derivatisation methods. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2011 , 879, 1402-11	3.2	22

(2009-2010)

169	Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. <i>Environmental Science & Environmental Science & E</i>	10.3	194
168	Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. <i>Environmental Science & Environmental Scienc</i>	10.3	295
167	Temperature and Ionic Strength Dependence of NO3-radical Reactions with Substituted Phenols in Aqueous Solution. <i>Zeitschrift Fur Physikalische Chemie</i> , 2010 , 224, 1261-1287	3.1	8
166	Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2709-2721	6.8	57
165	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1031-1055	6.8	58
164	Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of ⊞- and ⊞inene. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 9383-9392	6.8	129
163	A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application. <i>Journal of Atmospheric Chemistry</i> , 2010 , 67, 1-28	3.2	32
162	Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. <i>Journal of Atmospheric Chemistry</i> , 2010 , 67, 87-140	3.2	81
161	A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. <i>Atmospheric Environment</i> , 2010 , 44, 164-173	5.3	95
160	A European aerosol phenomenology B: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. <i>Atmospheric Environment</i> , 2010 , 44, 1308-1320	5.3	563
159	Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM. <i>Atmospheric Environment</i> , 2010 , 44, 5415-5422	5.3	89
158	Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools. <i>ChemPhysChem</i> , 2010 , 11, 3796-822	3.2	178
157	Performance of an Aerodyne Aerosol Mass Spectrometer (AMS) during Intensive Campaigns in China in the Summer of 2006. <i>Aerosol Science and Technology</i> , 2009 , 43, 189-204	3.4	51
156	Size segregated water uptake of the urban submicrometer aerosol in Beijing. <i>Atmospheric Environment</i> , 2009 , 43, 1578-1589	5.3	71
155	A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. <i>Atmospheric Environment</i> , 2009 , 43, 1367-1371	5.3	120
154	Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside. <i>Atmospheric Environment</i> , 2009 , 43, 2456-2463	5.3	42
153	Feinstübe und Umweltzonen#. <i>Chemie-Ingenieur-Technik</i> , 2009 , 81, 1363-1367	0.8	1
152	Rate constants for the OH reactions with oxygenated organic compounds in aqueous solution. <i>International Journal of Chemical Kinetics</i> , 2009 , 41, 309-326	1.4	28

151	Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model. <i>Journal of Atmospheric Chemistry</i> , 2009 , 64, 1-35	3.2	23
150	Quantification of organic acids in particulate matter by coupling of thermally assisted hydrolysis and methylation with thermodesorption-gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2009 , 1216, 6642-50	4.5	19
149	Terpenylic acid and related compounds from the oxidation of alpha-pinene: implications for new particle formation and growth above forests. <i>Environmental Science & Environmental Science & Environme</i>	3 ² 0.3	142
148	Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation. <i>Environmental Science & Environmental Science & Envir</i>	10.3	39
147	Characterization of the volatile fraction of laboratory-generated aerosol particles by thermodenuder-aerosol mass spectrometer coupling experiments. <i>Journal of Aerosol Science</i> , 2009 , 40, 603-612	4.3	18
146	Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7985-97	3.6	139
145	Reactivity of poly-alcohols towards OH, NO3 and SO4- in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9351-63	3.6	29
144	Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006. <i>Journal of Geophysical Research</i> , 2009 , 114,		68
143	Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles. <i>Journal of Geophysical Research</i> , 2009 , 114,		57
142	The formation, properties and impact of secondary organic aerosol: current and emerging issues. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5155-5236	6.8	2861
141	Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6865-6880	6.8	68
140	Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9299-9314	6.8	51
139	Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9587-9597	6.8	120
138	Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. <i>Atmospheric Environment</i> , 2008 , 42, 6284-6295	5.3	81
137	Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. <i>Atmospheric Environment</i> , 2008 , 42, 6351-6372	5.3	145
136	Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. <i>Atmospheric Environment</i> , 2008 , 42, 6373-6397	5.3	136
135	Size-segregated particulate chemical composition in Xinken, Pearl River Delta, China: OC/EC and organic compounds. <i>Atmospheric Environment</i> , 2008 , 42, 6296-6309	5.3	38
134	Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China. <i>Atmospheric Environment</i> , 2008 , 42, 6321-6334	5.3	70

(2006-2008)

133	A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 997-1016	6.8	71
132	Analysis of nitrophenols in cloud water with a miniaturized light-phase rotary perforator and HPLC-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 391, 161-9	4.4	59
131	Hydroxyl radical reactions with halogenated ethanols in aqueous solution: Kinetics and thermochemistry. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 174-188	1.4	28
130	Capram Modeling Of Aqueous Aerosol And Cloud Chemistry. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2008 , 107-122	0.3	
129	On the photolysis of simple anions and neutral molecules as sources of O-/OH, SO(x)- and Cl in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 3935-64	3.6	139
128	Study of nitrate radical (NO3) reactions with carbonyls and acids in aqueous solution as a function of temperature. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 958-68	3.6	12
127	Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. <i>Environmental Science & Environmental </i>	10.3	247
126	Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. <i>Journal of Geophysical Research</i> , 2007 , 112,		231
125	Chemie in Wolken, Nebel und Niederschlag. <i>Chemie in Unserer Zeit</i> , 2007 , 41, 254-265	0.2	1
124	Atmosph fi sche Aerosole: Quellen, Vorkommen, Zusammensetzung. <i>Chemie in Unserer Zeit</i> , 2007 , 41, 220-230	0.2	5
123	Applications of CE-ESI-MS/MS analysis to structural elucidation of methylenecyclohexane ozonolysis products in the particle phase. <i>Electrophoresis</i> , 2007 , 28, 1364-70	3.6	22
122	Development of a method for fast analysis of phenolic molecular markers in biomass burning particles using high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. <i>Journal of Chromatography A</i> , 2007 , 1143, 168-75	4.5	40
121	Determination of functionalised carboxylic acids in atmospheric particles and cloud water using capillary electrophoresis/mass spectrometry. <i>Journal of Chromatography A</i> , 2007 , 1171, 112-23	4.5	44
120	The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA)		
	under acidic conditions. <i>Atmospheric Environment</i> , 2007 , 41, 5571-5583	5.3	126
119		5·3 5·3	126 21
119 118	under acidic conditions. <i>Atmospheric Environment</i> , 2007 , 41, 5571-5583 Scavenging of SO4ladical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV)		
	under acidic conditions. <i>Atmospheric Environment</i> , 2007 , 41, 5571-5583 Scavenging of SO4l adical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. <i>Atmospheric Environment</i> , 2007 , 41, 9187-9194 Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in the		
118	under acidic conditions. <i>Atmospheric Environment</i> , 2007 , 41, 5571-5583 Scavenging of SO4l adical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. <i>Atmospheric Environment</i> , 2007 , 41, 9187-9194 Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in the Surface Boundary Layer of Southeastern China 2007 , 489-493 Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in	5.3	21

115	Formation of secondary organic particle phase compounds from isoprene gas-phase oxidation products: An aerosol chamber and field study. <i>Atmospheric Environment</i> , 2006 , 40, 2501-2509	5.3	97
114	Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. <i>Atmospheric Environment</i> , 2006 , 40, 299-311	5.3	233
113	Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China. <i>Journal of Geophysical Research</i> , 2006 , 111,		108
112	A source study of PM in Saxony by Size-Segregated Characterisation. <i>Journal of Atmospheric Chemistry</i> , 2006 , 55, 103-130	3.2	32
111	Laboratory studies on secondary organic aerosol formation from terpenes. <i>Faraday Discussions</i> , 2005 , 130, 279-94; discussion 363-86, 519-24	3.6	56
110	Missing Leloud condensation nuclei in peat smoke. Geophysical Research Letters, 2005, 32,	4.9	22
109	FEBUKO and MODMEP: Field measurements and modelling of aerosol and cloud multiphase processes. <i>Atmospheric Environment</i> , 2005 , 39, 4169-4183	5.3	50
108	Meteorological characterisation of the FEBUKO hill cap cloud experiments, Part I: Synoptic characterisation of measurement periods. <i>Atmospheric Environment</i> , 2005 , 39, 4185-4194	5.3	16
107	Aerosol characterisation at the FEBUKO upwind station Goldlauter (I): Particle mass, main ionic components, OCEC, and mass closure. <i>Atmospheric Environment</i> , 2005 , 39, 4209-4218	5.3	23
106	Aerosol characterisation at the FEBUKO upwind station Goldlauter (II): Detailed organic chemical characterisation. <i>Atmospheric Environment</i> , 2005 , 39, 4219-4231	5.3	35
105	Cloud physics and cloud water sampler comparison during FEBUKO. <i>Atmospheric Environment</i> , 2005 , 39, 4267-4277	5.3	31
104	Schmäke hill cap cloud and valley stations aerosol characterisation during FEBUKO (I): Particle size distribution, mass, and main components. <i>Atmospheric Environment</i> , 2005 , 39, 4291-4303	5.3	32
103	Schmäke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds. <i>Atmospheric Environment</i> , 2005 , 39, 4305-4320	5.3	103
102	Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. <i>Atmospheric Environment</i> , 2005 , 39, 4351-4363	5.3	141
101	SPACCIM: Simulations of the multiphase chemistry occurring in the FEBUKO hill cap cloud experiments. <i>Atmospheric Environment</i> , 2005 , 39, 4389-4401	5.3	34
100	Meteorological characterisation of the FEBUKO hill cap cloud experiments, Part II: Tracer experiments and flow characterisation with nested non-hydrostatic atmospheric models. <i>Atmospheric Environment</i> , 2005 , 39, 4195-4207	5.3	18
99	SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry. <i>Atmospheric Environment</i> , 2005 , 39, 4375-4388	5.3	53
98	Comparison of different model approaches for the simulation of multiphase processes. <i>Atmospheric Environment</i> , 2005 , 39, 4403-4417	5.3	23

97	Uptake of the NO 3 Radical on Aqueous Surfaces. Journal of Atmospheric Chemistry, 2005, 52, 1-18	3.2	8
96	SIMULATION OF AEROSOL-CLOUD CHEMISTRY INTERACTIONS DURING A HILL CAP CLOUD PASSAGE EXPERIMENT. <i>Journal of Aerosol Science</i> , 2004 , 35, S863-S864	4.3	
95	Numerical Treatment of Aqueous-Phase Chemistry in Atmospheric Chemistry-Transport Modelling 2004 , 399-407		
94	Aerosol-chamber study of the \oplus -pinene/O3 reaction: influence of particle acidity on aerosol yields and products. <i>Atmospheric Environment</i> , 2004 , 38, 761-773	5.3	284
93	Long-term size-segregated characterization of PM10, PM2.5, and PM1 at the IfT research station Melpitz downwind of Leipzig (Germany) using high and low-volume filter samplers. <i>Atmospheric Environment</i> , 2004 , 38, 5333-5347	5.3	74
92	Size-Resolved Aerosol Characterization for a Polluted Episode at the IfT Research Station Melpitz in Autumn 1997. <i>Journal of Atmospheric Chemistry</i> , 2004 , 48, 131-156	3.2	19
91	Uptake of acetone, 2-butanone, 2,3-butanedione and 2-oxopropanal on a water surface. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 965-971	3.6	12
90	Kinetics and mechanisms of reactions of the nitrate radical (NO3) with substituted phenols in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 5379	3.6	20
89	Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 4118	3.6	34
88	SIZE-SEGREGATED PHYSICAL-CHEMICAL CHARACTERIZATION OF TROPOSPHERIC PARTICLES IN WINTER 2003 AT MELPITZ (GERMANY). <i>Journal of Aerosol Science</i> , 2004 , 35, S1157-S1158	4.3	
87	Determination of biogenic organic compounds in airborne particles by solvent extraction, derivatisation and mass spectrometric detection. <i>Chromatographia</i> , 2003 , 57, S253-S259	2.1	8
86	Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements. <i>Atmospheric Environment</i> , 2003 , 37, 2643-2662	5.3	59
85	Method development for the analysis of particle phase substituted methoxy phenols and aromatic acids from biomass burning using capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS). <i>Journal of Chromatography A</i> , 2003 , 1018, 105-15	4.5	39
84	CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application. <i>Journal of Geophysical Research</i> , 2003 , 108,		152
83	Halogen production from aqueous tropospheric particles. <i>Chemosphere</i> , 2003 , 52, 485-502	8.4	36
82	Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1811-1824	3.6	186
81	Kinetics of aqueous phase reactions relevant for atmospheric chemistry. <i>Chemical Reviews</i> , 2003 , 103, 4691-716	68.1	234
80	Laser based spectroscopic and kinetic investigations of reactions of the Cl atom with oxygenated hydrocarbons in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2562	3.6	25

79	Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. <i>Journal of Geophysical Research</i> , 2002 , 107, INX2 30-1		70
78	Laser-based studies of NO3 radical reactions with selected aromatic compounds in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2975-2982	3.6	29
77	Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 60-67	3.6	29
76	A mechanistic study of the oxidation of phenol by OH/NO2/NO3 in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 3669-3675	3.6	35
75	Monoterpene emissions and carbonyl compound air concentrations during the blooming period of rape (Brassica napus). <i>Chemosphere</i> , 2002 , 49, 1247-56	8.4	31
74	Tropospheric Multiphase Chemistry in Field, Modelling and Laboratory Studies 2002 , 31-36		
73	Mechanism Development for Tropospheric Multiphase Chemistry with CAPRAM 2002 , 413-421		
72	. Tellus, Series B: Chemical and Physical Meteorology, 2001 , 53, 529-545	3.3	27
71	Scenarios for Modeling Multiphase Tropospheric Chemistry. <i>Journal of Atmospheric Chemistry</i> , 2001 , 40, 77-86	3.2	13
70	Trends of pollution in rain over East Germany caused by changing emissions. <i>Tellus, Series B:</i> Chemical and Physical Meteorology, 2001 , 53, 529-545	3.3	
69	Subproject CMD Laboratory Studies and Mechanism Development for Tropospheric Aqueous Particle Chemistry 2001 , 62-68		
68	KINETIC STUDIES OF HALOGEN CONTAINING RADICALS IN THE AQUEOUS PHASE. <i>Journal of Aerosol Science</i> , 2001 , 32, 307-308	4.3	
67	MODELING STUDY ON CHEMISTRY OF HALOGENS IN MARINE AEROSOLS. <i>Journal of Aerosol Science</i> , 2001 , 32, 303-304	4.3	
66	DETERMINATION OF PHASE TRANSFER PARAMETERS OF THE ATMOSPHERIC TRACE GASES NITRIC ACID, OZONE, AND DINITROGENPENTOXIDE AT LIQUID SURFACES. <i>Journal of Aerosol Science</i> , 2001 , 32, 301-302	4.3	
65	LASER-BASED STUDIES OF OH/RO2 REACTIONS FOR CLOUD AND AEROSOL CHEMISTRY. <i>Journal of Aerosol Science</i> , 2001 , 32, 305-306	4.3	1
64	CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry. <i>Journal of Atmospheric Chemistry</i> , 2000 , 36, 231-284	3.2	173
63	Reply to Comment on A chemical aqueous phase radical mechanism for tropospheric chemistry by R. Sander and P. Crutzen <i>Chemosphere</i> , 2000 , 41, 633-634	8.4	1
62	Organic acids in atmospheric particles: Results from different field campaigns in Europe. <i>Journal of Aerosol Science</i> , 2000 , 31, 238-239	4.3	3

(1995-2000)

61	Chemical and structural characterisation of size segregated wintertime aerosol from two urban and a rural sampling site in NW-saxony (Germany). <i>Journal of Aerosol Science</i> , 2000 , 31, 378-379	4.3	
60	A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles: Methods and first results. <i>Journal of Geophysical Research</i> , 2000 , 105, 4513-4527		115
59	On the formation of benzene oxide/oxepin in the gas-phase reaction of OH radicals with benzene. <i>Chemical Physics Letters</i> , 1999 , 314, 435-442	2.5	37
58	Main particulate matter components in Saxony (Germany): Trends and sampling aspects. <i>Environmental Science and Pollution Research</i> , 1999 , 6, 89-94	5.1	12
57	Laboratory and modelling studies of tropospheric multiphase conversions involving some C1 and C2 peroxyl radicals. <i>Physics and Chemistry of the Earth</i> , 1999 , 24, 287-290		11
56	A laser flash photolysis kinetic study of reactions of the Cl2Dadical anion with oxygenated hydrocarbons in aqueous solution. <i>International Journal of Chemical Kinetics</i> , 1999 , 31, 169-181	1.4	28
55	The Carbonate Radical (HCO3[/CO3[) as a Reactive Intermediate in Water Chemistry: Kinetics and Modelling. <i>Clean - Soil, Air, Water</i> , 1999 , 27, 214-222		48
54	Chemical composition and mass closure of the size-segregated atmospheric aerosol in Falkenberg during LACE. <i>Journal of Aerosol Science</i> , 1999 , 30, S913-S914	4.3	4
53	A chemical aqueous phase radical mechanism for tropospheric chemistry. <i>Chemosphere</i> , 1999 , 38, 1223-	-182.342	31
52	Free radical chemical conversions within tropospheric aqueous aerosols. <i>Journal of Aerosol Science</i> , 1998 , 29, S989-S990	4.3	
51	Modelling of radiation quantities and photolysis frequencies in the aqueous phase in the troposphere. <i>Atmospheric Environment</i> , 1997 , 31, 3137-3150	5.3	29
50	A laser flash photolysis study of the decay of Cl-Atoms and Cl2[radical anions in aqueous solution at 298 K. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1997 , 101, 1909-1913		15
49	Lidar calibration experiments. Applied Physics B: Lasers and Optics, 1997, 64, 355-361	1.9	18
48	A spectroscopic study of small organic peroxyl radicals (RO2) in aqueous solution. <i>Journal of Molecular Structure</i> , 1997 , 408-409, 539-542	3.4	7
47	Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry. <i>Analytical and Bioanalytical Chemistry</i> , 1996 , 355, 343-4	4.4	11
46	Time-Resolved Radio Frequency Conductivity (TRRFC) Studies of Charge-Carrier Dynamics in Aqueous Semiconductor Suspensions. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 16641-16645		11
45	Laboratory studies of atmospheric aqueous-phase free-radical chemistry: kinetic and spectroscopic studies of reactions of NO3 and SO4lfadicals with aromatic compounds. <i>Faraday Discussions</i> , 1995 , 100, 129	3.6	39
44	Time-resolved UV/VIS diode array absorption spectroscopy of SOx[k=3, 4, 5) radical anions in aqueous solution. <i>Journal of Molecular Structure</i> , 1995 , 348, 183-186	3.4	98

43	Rate constants for the reactions of the NO3 radical with HCOOH/HCOOland CH3COOH/CH3COOlin aqueous solution between 278 and 328 K. <i>Journal of Atmospheric Chemistry</i> , 1994 , 18, 359-378	3.2	26
42	Reactivity trends in reactions of the nitrate radical (NO3) with inorganic and organic cloudwater constituents. <i>Geochimica Et Cosmochimica Acta</i> , 1994 , 58, 3239-3244	5.5	17
41	Time-resolved microwave conductivity. Part 2. Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3323-3330		152
40	Time-resolved microwave conductivity. Part 1.IIiO2 photoreactivity and size quantization. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3315-3322		222
39	A diode-pumped Nd: YAG lidar for airborne cloud measurements. <i>Optics and Laser Technology</i> , 1993 , 25, 283-287	4.2	18
38	Laser-Based Studies of Reactions of the Nitrate Radical in Aqueous Solution. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1992 , 96, 470-477		57
37	The Absorption Spectrum of the Nitrate (NO3) Radical in Aqueous Solution. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1991 , 95, 598-604		14
36	A laser-spectrometric study of the NO3 radical in the aqueous phase. <i>Freseniusf Journal of Analytical Chemistry</i> , 1991 , 340, 638-640		1
35	Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278B53 K. <i>Journal of Atmospheric Chemistry</i> , 1990 , 10, 411-425	3.2	195
34	Zur Ermittlung und Verwendung von Fehlerspektren gemessener Partikelgr\(\mathbb{B}\)nverteilungen. Chemie-Ingenieur-Technik, 1982 , 54, 404-405	0.8	
33	Ein allgemeines Verfahren zur Verbesserung des Meßehlers in der Partikelgr\(\text{B}\)nanalyse. Chemie-Ingenieur-Technik, 1979, 51, 1140-1141	0.8	1
32	Airborne lidar aerosol measurements during the ASSESS II mission. <i>Review of Scientific Instruments</i> , 1978 , 49, 974	1.7	3
31	DFVLR mobile lidar system. Review of Scientific Instruments, 1977, 48, 247-251	1.7	1
30	Seasonal and diurnal variations of particulate nitrate and organic matter in the Central European atmospheric aerosol		2
29	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales		11
28	A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions		2
27	Temporal evolution of stable water isotopologues in cloud droplets during HCCT-2010		3
26	Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde Islands		3

25	Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods	2
24	Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the Polarstern cruise ANT XXVII/4	1
23	Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain	3
22	Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution	2
21	Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign	4
20	Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010	3
19	Critical assessment of meteorological conditions and airflow connectivity during HCCT-2010	4
18	Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids	7
17	Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011)	3
16	Trace metal characterization of aerosol particles and cloud water during HCCT 2010	1
15	Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition	5
14	Effect of varying experimental conditions on the viscosity of ∃-pinene derived secondary organic material	2
13	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy	2
12	An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine	6
11	Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands	3
10	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments	1
9	Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive	4
8	The formation, properties and impact of secondary organic aerosol: current and emerging issues	24

7	Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods	2
6	ACTRIS ACSM intercomparison [Part I: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with Time-of-Flight ACSM (TOF-ACSM), High Resolution ToF Aerosol Mass Spectrometer (HR-ToF-AMS)	3
5	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII ©riegee intermediates	2
4	Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates	3
3	In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010	1
2	Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds	4
1	Sea Ice Microbiota in the Antarctic Peninsula Modulates Cloud-Relevant Sea Spray Aerosol Production. <i>Frontiers in Marine Science</i> ,9, 4-5	1