Charles J Newell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9782439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chlorinated Ethene Source Remediation: Lessons Learned. Environmental Science & Technology, 2012, 46, 6438-6447.	10.0	176
2	Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Ground Water Monitoring and Remediation, 2006, 26, 73-84.	0.8	154
3	A Multisite Survey To Identify the Scale of the 1,4-Dioxane Problem at Contaminated Groundwater Sites. Environmental Science and Technology Letters, 2014, 1, 254-258.	8.7	124
4	Evidence of 1,4-Dioxane Attenuation at Groundwater Sites Contaminated with Chlorinated Solvents and 1,4-Dioxane. Environmental Science & amp; Technology, 2015, 49, 6510-6518.	10.0	104
5	Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. Journal of Contaminant Hydrology, 2012, 134-135, 69-81.	3.3	89
6	Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change. Ground Water Monitoring and Remediation, 2017, 37, 62-81.	0.8	78
7	MAROS: A Decision Support System for Optimizing Monitoring Plans. Ground Water, 2003, 41, 355-367.	1.3	72
8	Mass-Based, Field-Scale Demonstration of PFAS Retention within AFFF-Associated Source Areas. Environmental Science & Technology, 2020, 54, 15768-15777.	10.0	71
9	PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per―and polyfluoroalkyl substances (PFAS) contamination issues. Remediation, 2019, 29, 31-48.	2.4	67
10	A Hydrogeologic Database for Ground-Water Modeling. Ground Water, 1990, 28, 703-714.	1.3	48
11	Historical analysis of monitored natural attenuation: A survey of 191 chlorinated solvent sites and 45 solvent plumes. Remediation, 2004, 15, 99-112.	2.4	48
12	Groundwater Remediation: The Next 30 Years. Ground Water, 2012, 50, 669-678.	1.3	43
13	The New Potential for Understanding Groundwater Contaminant Transport. Ground Water, 2014, 52, 174-186.	1.3	43
14	Multiyear Temporal Changes in Chlorinated Solvent Concentrations at 23 Monitored Natural Attenuation Sites. Journal of Environmental Engineering, ASCE, 2006, 132, 653-663.	1.4	41
15	Analysis of DNAPL source-depletion costs at 36 field sites. Remediation, 2005, 15, 9-18.	2.4	40
16	Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites. Science of the Total Environment, 2016, 562, 98-107.	8.0	35
17	Contaminant Plume Classification System Based on Mass Discharge. Ground Water, 2011, 49, 914-919.	1.3	33
18	Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers. Journal of Contaminant Hydrology, 2007, 90, 1-20.	3.3	32

CHARLES J NEWELL

#	Article	IF	CITATIONS
19	Comparing PFAS to other groundwater contaminants: Implications for remediation. Remediation, 2020, 30, 7-26.	2.4	30
20	Planning-level source decay models to evaluate impact of source depletion on remediation time frame. Remediation, 2005, 15, 27-47.	2.4	28
21	Monitored Natural Attenuation to Manage <scp>PFAS</scp> Impacts to Groundwater: Scientific Basis. Ground Water Monitoring and Remediation, 2021, 41, 76-89.	0.8	27
22	Sustained treatment: Implications for treatment timescales associated with sourceâ€depletion technologies. Remediation, 2011, 21, 27-50.	2.4	24
23	Progress in Remediation of Groundwater at Petroleum Sites in California. Ground Water, 2014, 52, 898-907.	1.3	24
24	Characterization of relevant site-specific PFAS fate and transport processes at multiple AFFF sites. Environmental Advances, 2022, 7, 100167.	4.8	24
25	Support of Source Zone Bioremediation through Endogenous Biomass Decay and Electron Donor Recycling. Bioremediation Journal, 2009, 13, 29-40.	2.0	22
26	Membrane Interface Probe Protocol for Contaminants in Lowâ€Permeability Zones. Ground Water, 2014, 52, 550-565.	1.3	20
27	Application of Four Measurement Techniques to Understand Natural Source Zone Depletion Processes at an <scp>LNAPL</scp> Site. Ground Water Monitoring and Remediation, 2020, 40, 75-88.	0.8	20
28	Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation, 2008, 19, 545-553.	3.0	13
29	Natural Source Zone Depletion (NSZD): from process understanding to effective implementation at LNAPL-impacted sites. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55, .	1.4	13
30	Characterization and Source History Modeling Using Low-k Zone Profiles at Two Source Areas. Ground Water Monitoring and Remediation, 2015, 35, 52-69.	0.8	12
31	Vertical Discretization Impact in Numerical Modeling of Matrix Diffusion in Contaminated Groundwater. Ground Water Monitoring and Remediation, 2020, 40, 52-64.	0.8	10
32	Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds. Journal of Contaminant Hydrology, 2022, 247, 103987.	3.3	10
33	Optimizing groundwater long-term monitoring networks using Delaunay triangulation spatial analysis techniques. Environmetrics, 2005, 16, 635-657.	1.4	9
34	Evaluation of Source-Zone Attenuation at LUFT Sites with Mobile LNAPL. Soil and Sediment Contamination, 2015, 24, 917-929.	1.9	9
35	Monitored natural attenuation to manage PFAS impacts to groundwater: Potential guidelines. Remediation, 2021, 31, 7.	2.4	9
36	PFAS Experts Symposium 2: PFAS Remediation research – Evolution from past to present, current efforts, and potential futures. Remediation, 2022, 32, 65-73.	2.4	9

CHARLES J NEWELL

#	Article	IF	CITATIONS
37	Groundwater monitoring plans at small-scale sites—an innovative spatial and temporal methodology. Journal of Environmental Monitoring, 2003, 5, 126-134.	2.1	8
38	Matrix Diffusion Modeling Applied to Longâ€Term Pumpâ€andâ€Treat Data: 1. Method Development. Remediation, 2013, 23, 71-91.	2.4	8
39	Impact of Temperature on Groundwater Source Attenuation Rates at Hydrocarbon Sites. Ground Water Monitoring and Remediation, 2017, 37, 82-93.	0.8	8
40	Field Investigation of Vaporâ€Phaseâ€Based Groundwater Monitoring. Ground Water Monitoring and Remediation, 2012, 32, 59-72.	0.8	7
41	Evaluation of Longâ€Term Performance and Sustained Treatment at Enhanced Anaerobic Bioremediation Sites. Ground Water Monitoring and Remediation, 2016, 36, 32-44.	0.8	7
42	Simple Modeling Tool for Reconstructing Source History Using High Resolution Contaminant Profiles From Lowâ€k Zones. Remediation, 2015, 25, 31-51.	2.4	6
43	Direct aerobic NSZD of a basalt vadose zone LNAPL source in Hawaii. Journal of Contaminant Hydrology, 2020, 235, 103729.	3.3	6
44	Development of a Quantitative Framework for Evaluating Natural Attenuation of 1,1, <scp>1â€TCA</scp> , 1, <scp>1â€DCA</scp> , 1, <scp>1â€DCE</scp> , and 1, <scp>4â€Dioxane</scp> in Groundwater. Ground Water Monitoring and Remediation, 2022, 42, 78-84.	0.8	6
45	Process to separate per―and polyfluoroalkyl substancesÂfrom water using colloidal gas aphrons. Remediation, 0, , .	2.4	6
46	Laboratory validation study of new vaporâ€phaseâ€based approach for groundwater monitoring. Remediation, 2009, 20, 87-106.	2.4	5
47	The New Potential for Understanding Groundwater Contaminant Transport. Ground Water, 2014, 52, 656-658.	1.3	5
48	Impacts of Source Management on Chlorinated Solvent Plumes. SERDP and ESTCP Remediation Technology Monograph Series, 2010, , 185-216.	0.3	5
49	Long-Term Sustainability of Reductive Dechlorination Reactions at Chlorinatedsolvents Sites. Biodegradation, 2004, 15, 387-394.	3.0	4
50	The influence of seasonal vertical temperature gradients on noâ€purge sampling of wells. Remediation, 2012, 22, 21-36.	2.4	4
51	Negative Bias and Increased Variability in VOC Concentrations Using the HydraSleeve in Monitoring Wells. Ground Water Monitoring and Remediation, 2016, 36, 79-87.	0.8	4
52	Allocating remedial costs at a superfund site using risk magnitude, geographic information systems, and Monte Carlo analysis. Environmental Forensics, 2020, 21, 223-235.	2.6	4
53	How much heterogeneity? Flow versus area from a big data perspective. Remediation, 2020, 30, 15-23.	2.4	3
54	Modeling a well-characterized perfluorooctane sulfonate (PFOS) source and plume using the REMChlor-MD model to account for matrix diffusion. Journal of Contaminant Hydrology, 2022, 247, 103986.	3.3	3

CHARLES J NEWELL

#	Article	IF	CITATIONS
55	Closing the mass balance at chlorinated solvent sites: Sources and attenuation processes. Remediation, 2010, 20, 61-75.	2.4	2
56	Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration. Ground Water, 2016, 54, 692-698.	1.3	2
57	In situ gas sparging for concentration and removal of per―and polyfluoroalkyl substances (PFAS) from groundwater. Remediation, 2021, 31, 35.	2.4	2
58	NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER. , 2014, , 863-915.		1
59	Modeling Remediation of Chlorinated Solvent Plumes. SERDP and ESTCP Remediation Technology Monograph Series, 2010, , 145-184.	0.3	1
60	Natural Attenuation Of Chlorinated Solvent Source Zones. , 2014, , 459-508.		1
61	Onâ€5ite Vaporâ€Phase Analysis as a Novel Approach for Monitoring Groundwater Wells. Ground Water Monitoring and Remediation, 2014, 34, 42-59.	0.8	0
62	NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER. , 2019, , 1729-1779.		0
63	Reply to Comments in Response to <scp>Peerâ€Reviewed</scp> Technical Note "Application of Four Measurement Techniques to Understand Natural Source Zone Depletion Processes at an <scp>LNAPL</scp> Site―(Kirkman, Zimbron). Ground Water Monitoring and Remediation, 2021, 41, 8-9.	0.8	0
64	Source Depletion at Contaminated Groundwater Sites: Is it Worth it?. , 2005, , .		0