
Zhi Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9782012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
2	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
3	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
4	Atomically dispersed single iron sites for promoting Pt and Pt ₃ Co fuel cell catalysts: performance and durability improvements. Energy and Environmental Science, 2021, 14, 4948-4960.	15.6	168
5	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	10.1	138
6	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	7.2	128
7	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
8	High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy and Environmental Science, 2021, 14, 1449-1460.	15.6	100
9	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	10.8	94
10	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62
11	Advanced Nanocarbons for Enhanced Performance and Durability of Platinum Catalysts in Proton Exchange Membrane Fuel Cells. Small, 2021, 17, e2006805.	5.2	54
12	Progress and Challenges of Carbon Dioxide Reduction Reaction on Transition Metal Based Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 8661-8684.	2.5	42
13	Holdups in Nitride MXene's Development and Limitations in Advancing the Field of MXene. Small, 2022, 18, e2106129.	5.2	36
14	Challenges and opportunities for nitrogen reduction to ammonia on transitional metal nitrides via Mars-van Krevelen mechanism. Cell Reports Physical Science, 2021, 2, 100438.	2.8	27
15	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	1.6	10
16	Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chemical Communications, 2022, 58, 2096-2111.	2.2	7
17	Synergy of Pt-Free Single Metal Sites for Promoting Pt and Pt3co Ordered Intermetallic Catalysts for Fuel Cells: Performance and Durability Improvements. ECS Meeting Abstracts, 2021, MA2021-01, 1852-1852.	0.0	0
18	(Invited) Polymer Hydrogel-Derived Carbon Supports for Highly Stable Pt/C Cathode Catalysts in PEM Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
19	Metal–Organic Frameworks-Derived Ptm Intermetallic Nanoparticles for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-01, 2675-2675.	0.0	0
20	Size-Controlled Synthesis of L10-CoPt Intermetallic Fuel Cell Catalysts on Nitrogen-Doped Mesoporous Graphitized Carbon Support. ECS Meeting Abstracts, 2020, MA2020-01, 1623-1623.	0.0	0