
José MarÃ-a CatalÃ;n Orts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9781339/publications.pdf

Version: 2024-02-01

ΙΟςÃΩ ΜΑΡÃΑ CΑΤΑΙ Ã:Ν ΟΡΤς

#	Article	IF	CITATIONS
1	Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Scientific Reports, 2018, 8, 10823.	3.3	61
2	Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons. Frontiers in Neurorobotics, 2018, 12, 5.	2.8	45
3	Hand exoskeleton for rehabilitation therapies with integrated optical force sensor. Advances in Mechanical Engineering, 2018, 10, 168781401775388.	1.6	39
4	Development of a robotic device for post-stroke home tele-rehabilitation. Advances in Mechanical Engineering, 2018, 10, 168781401775230.	1.6	28
5	Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke. IEEE Systems Journal, 2021, 15, 2314-2321.	4.6	28
6	Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks. Sensors, 2019, 19, 3391.	3.8	27
7	Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks. Sensors, 2015, 15, 30571-30583.	3.8	26
8	Multimodal robotic system for upper-limb rehabilitation in physical environment. Advances in Mechanical Engineering, 2016, 8, 168781401667028.	1.6	16
9	Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton. Sensors, 2019, 19, 4931.	3.8	16
10	The Effect of an Active Upper-Limb Exoskeleton on Metabolic Parameters and Muscle Activity During a Repetitive Industrial Task. IEEE Access, 2022, 10, 16479-16488.	4.2	11
11	Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms. Sensors, 2018, 18, 2408.	3.8	10
12	Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications. Sensors, 2018, 18, 493.	3.8	9
13	Differences in Physiological Reactions Due to a Competitive Rehabilitation Game Modality. Sensors, 2021, 21, 3681.	3.8	8
14	Patient Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use. , 2018, , .		7
15	Movement-Related EEG Oscillations of Contralesional Hemisphere Discloses Compensation Mechanisms of Severely Affected Motor Chronic Stroke Patients. International Journal of Neural Systems, 2021, 31, 2150053.	5.2	6
16	Exploring New Potential Applications for Hand Exoskeletons: Power Grip to Assist Human Standing. Sensors, 2021, 21, 30.	3.8	6
17	Tele-Rehabilitation Versus Local Rehabilitation Therapies Assisted by Robotic Devices: A Pilot Study with Patients. Applied Sciences (Switzerland), 2021, 11, 6259.	2.5	5
18	A Modular Mobile Robotic Platform to Assist People with Different Degrees of Disability. Applied Sciences (Switzerland), 2021, 11, 7130.	2.5	5

JOSé MARÃA CATALÃIN ORTS

#	Article	IF	CITATIONS
19	Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use from Patient Perspective. Biosystems and Biorobotics, 2019, , 449-453.	0.3	5
20	Kinematic reconstruction of the human arm joints in robot-aided therapies with Hermes robot. , 2015, 2015, 1190-3.		3
21	Design of a Prono-Supination Mechanism for Activities of Daily Living. Biosystems and Biorobotics, 2017, , 531-535.	0.3	3
22	Oxygen consumption in industrial tasks assisted by an active upper-limb exoskeleton , 2020, , .		3
23	Evaluation of performance and heart rate variability during intensive usage of a BCI-controlled hand exoskeleton. , 2020, , .		3
24	Multimodal Control Architecture for Assistive Robotics. Biosystems and Biorobotics, 2017, , 513-517.	0.3	2
25	Physiological reactions in single-player and competitive arm rehabilitation games. , 2019, 2019, 433-436.		2
26	Human-Centered Design of an Upper-Limb Exoskeleton for Tedious Maintenance Tasks. Biosystems and Biorobotics, 2019, , 515-519.	0.3	2
27	Advantages of the Incorporation of an Active Upper-Limb Exoskeleton in Industrial Tasks. Advances in Intelligent Systems and Computing, 2020, , 477-484.	0.6	2
28	Upper-Limb Motion Analysis in Daily Activities Using Wireless Inertial Sensors. Biosystems and Biorobotics, 2017, , 1079-1083.	0.3	1
29	Modelo de predicción de respuestas cardiovasculares durante la inmersión en un entorno acuático. , 2021, , 411-418.		0
30	Evaluación del uso de corriente alterna en la medida de la respuesta galvánica de la piel (GSR). , 2021, , 126-132.		0
31	Mechanical Design of a Novel Hand Exoskeleton Driven by Linear Actuators. Advances in Intelligent Systems and Computing, 2018, , 557-568.	0.6	0
32	Modulation of Functional Connectivity Evaluated by Surface EEG in Alpha and Beta Band During a Motor-Imagery Based BCI Task. Biosystems and Biorobotics, 2019, , 1087-1091.	0.3	0
33	Grasping Detection with Force Sensor Embedded in a Hand Exoskeleton. Biosystems and Biorobotics, 2019, , 386-390.	0.3	0
34	Dise $ ilde{A}$ \pm o de un sensor $ ilde{A}^3$ ptico de fuerza para exoesqueleto de mano. , 0, , .		0
35	Sistema robótico multimodal de miembro superior para interacción con entornos fÃsicos. , 0, , .		0
36	Diseño de un motor de tareas para terapias de neurorehabilitación asistidas por robots. , 0, , .		0