
## Krzysztof Fortuniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978100/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Urban Water Storage Capacity Inferred From Observed Evapotranspiration Recession. Geophysical Research Letters, 2022, 49, .                                                                                                             | 1.5 | 5         |
| 2  | A new approach to simulate peat accumulation, degradation and stability in a global land surface<br>scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model<br>Development, 2022, 15, 1633-1657. | 1.3 | 6         |
| 3  | Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020. Geoscientific<br>Model Development, 2022, 15, 2813-2838.                                                                                             | 1.3 | 8         |
| 4  | Temperate mire fluctuations from carbon sink to carbon source following changes in water table.<br>Science of the Total Environment, 2021, 756, 144071.                                                                                 | 3.9 | 16        |
| 5  | LSTM Processing of Experimental Time Series with Varied Quality. Lecture Notes in Computer Science, 2021, , 581-593.                                                                                                                    | 1.0 | 1         |
| 6  | Characterizing the State of the Urban Surface Layer Using Radonâ€⊋22. Journal of Geophysical Research<br>D: Atmospheres, 2019, 124, 770-788.                                                                                            | 1.2 | 26        |
| 7  | Lodz research on urban climate. Acta Geographica Lodziensia, 2019, 108, .                                                                                                                                                               | 0.8 | 1         |
| 8  | Climatological Aspects of Convective Parameters over Europe: A Comparison of ERA-Interim and Sounding Data. Journal of Climate, 2018, 31, 4281-4308.                                                                                    | 1.2 | 78        |
| 9  | Long-term Turbulent Sensible-Heat-Flux Measurements with a Large-Aperture Scintillometer in the<br>Centre of Åųdź, Central Poland. Boundary-Layer Meteorology, 2018, 167, 469-492.                                                      | 1.2 | 7         |
| 10 | ORCHIDEE-PEAT (revision 4596), a model for northern peatland<br>CO <sub>2</sub> , water, and energy fluxes on daily to annual scales.<br>Geoscientific Model Development, 2018, 11, 497-519.                                            | 1.3 | 43        |
| 11 | Sea water surface energy balance in the Arctic fjord (Hornsund, SW Spitsbergen) in May–November<br>2014. Theoretical and Applied Climatology, 2017, 128, 959-970.                                                                       | 1.3 | 3         |
| 12 | Developing a Research Strategy to Better Understand, Observe, and Simulate Urban Atmospheric<br>Processes at Kilometer to Subkilometer Scales. Bulletin of the American Meteorological Society, 2017,<br>98, ES261-ES264.               | 1.7 | 40        |
| 13 | Influence of Mean Rooftop-Level Estimation Method on Sensible Heat Flux Retrieved from a<br>Large-Aperture Scintillometer Over a City Centre. Boundary-Layer Meteorology, 2017, 164, 281-301.                                           | 1.2 | 5         |
| 14 | Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agricultural and Forest<br>Meteorology, 2017, 232, 306-318.                                                                                                    | 1.9 | 47        |
| 15 | The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling:<br>description and application with the COSMO-CLM model for a Belgian summer. Geoscientific Model<br>Development, 2016, 9, 3027-3054.      | 1.3 | 96        |
| 16 | Urban – Wetland contrast in turbulent exchange of methane. Atmospheric Environment, 2016, 145, 176-191.                                                                                                                                 | 1.9 | 6         |
| 17 | Wetland Evapotranspiration: Eddy Covariance Measurement in the Biebrza Valley, Poland. Wetlands, 2016, 36, 1055-1067.                                                                                                                   | 0.7 | 17        |
| 18 | Eddy covariance measurements of the net turbulent methane flux in the city centre – results of 2-year campaign in ÅÃ3dź, Poland. Atmospheric Chemistry and Physics, 2016, 16, 8281-8294.                                                | 1.9 | 14        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selected Spectral Characteristics of Turbulence over an Urbanized Area in the Centre of Åódź, Poland.<br>Boundary-Layer Meteorology, 2015, 154, 137-156.                                                  | 1.2 | 9         |
| 20 | Integral Turbulence Statistics Over a Central European City Centre. Boundary-Layer Meteorology, 2013, 146, 257-276.                                                                                       | 1.2 | 45        |
| 21 | Turbulent sensible heat flux in Åódź, Central Poland, obtained from scintillometer and eddy<br>covariance measurements. Meteorologische Zeitschrift, 2013, 22, 603-613.                                   | 0.5 | 18        |
| 22 | 9th ECAC – Special issue. Meteorologische Zeitschrift, 2013, 22, 531-532.                                                                                                                                 | 0.5 | 0         |
| 23 | Coreless winters in the European sector of the Arctic and their synoptic conditions. Polish Polar Research, 2012, 33, 19-34.                                                                              | 0.9 | 4         |
| 24 | Turbulent Sensible Heat Flux in Åódź Obtained from Scintillometer Measuerments – Comparison of Free<br>and Mix Algorithms. Contemporary Trends in Geoscience, 2012, 1, 109-117.                           | 0.5 | 4         |
| 25 | Initial results from Phase 2 of the international urban energy balance model comparison.<br>International Journal of Climatology, 2011, 31, 244-272.                                                      | 1.5 | 284       |
| 26 | Carbon dioxide flux in the centre of Åódź, Poland—analysis of a 2â€year eddy covariance measurement<br>data set. International Journal of Climatology, 2011, 31, 232-243.                                 | 1.5 | 65        |
| 27 | The occurrence of coreless winters in central Spitsbergen and their synoptic conditions. Polar Research, 2011, 30, 12218.                                                                                 | 1.6 | 8         |
| 28 | The International Urban Energy Balance Models Comparison Project: First Results from Phase 1.<br>Journal of Applied Meteorology and Climatology, 2010, 49, 1268-1292.                                     | 0.6 | 397       |
| 29 | Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of<br>Cities (Producers/Capabilities Perspective). Procedia Environmental Sciences, 2010, 1, 247-274.       | 1.3 | 211       |
| 30 | Multiâ€indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal<br>variations in the NW Europe–North Sea region. International Journal of Climatology, 2009, 29, 373-384. | 1.5 | 55        |
| 31 | Urban Surface Energy Balance Models: Model Characteristics and Methodology for a Comparison Study. , 2009, , 97-123.                                                                                      |     | 17        |
| 32 | Numerical estimation of the effective albedo of an urban canyon. Theoretical and Applied Climatology, 2008, 91, 245-258.                                                                                  | 1.3 | 46        |
| 33 | Intraurban Differences of Surface Energy Fluxes in a Central European City. Journal of Applied<br>Meteorology and Climatology, 2006, 45, 125-136.                                                         | 0.6 | 94        |
| 34 | Urban–rural contrasts of meteorological parameters in Åódź. Theoretical and Applied Climatology,<br>2006, 84, 91-101.                                                                                     | 1.3 | 124       |
| 35 | Temporal variations in heat fluxes over a central European city centre. Theoretical and Applied Climatology, 2006, 84, 103-115.                                                                           | 1.3 | 87        |
| 36 | Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. International Journal of Climatology, 2005, 25, 1405-1419.                                  | 1.5 | 184       |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Changes in the Probability of Heavy Precipitation: Important Indicators of Climatic Change. Climatic Change, Climatic Change, 1999, 42, 243-283.   | 1.7 | 495       |
| 38 | Temporal and spatial characteristics of the urban heat island of ÅódÅ⁰, Poland. Atmospheric<br>Environment, 1999, 33, 3885-3895.                   | 1.9 | 225       |
| 39 | Interdecadal variations of surface wind direction in Lund, southern Sweden, 1741–1990. International<br>Journal of Climatology, 1995, 15, 447-461. | 1.5 | 24        |