
Stacey L Harper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/978017/publications.pdf Version: 2024-02-01

STACEVI HADDED

#	Article	IF	CITATIONS
1	Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 195-206.	3.3	369
2	In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon, 2007, 45, 1891-1898.	10.3	272
3	Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 2016, 3, 953-965.	4.3	258
4	Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicology and Applied Pharmacology, 2008, 229, 44-55.	2.8	201
5	Evaluation of Embryotoxicity Using the Zebrafish Model. Methods in Molecular Biology, 2011, 691, 271-279.	0.9	189
6	Systematic Evaluation of Nanomaterial Toxicity: Utility of Standardized Materials and Rapid Assays. ACS Nano, 2011, 5, 4688-4697.	14.6	152
7	How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale, 2016, 8, 9919-9943.	5.6	86
8	Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose, 2016, 23, 1763-1775.	4.9	73
9	Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Archives of Pharmacal Research, 2013, 36, 125-133.	6.3	58
10	Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact, 2018, 9, 85-101.	4.5	56
11	Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environmental Toxicology and Chemistry, 2019, 38, 591-602.	4.3	56
12	The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules. Environment International, 2016, 86, 68-74.	10.0	51
13	Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. International Journal of Nanomedicine, 2014, 9, 1947.	6.7	46
14	Proactively designing nanomaterials to enhance performance and minimise hazard. International Journal of Nanotechnology, 2008, 5, 124.	0.2	44
15	Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquatic Toxicology, 2017, 190, 78-86.	4.0	44
16	Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: impacts of community complexity. Environmental Science: Nano, 2017, 4, 359-372.	4.3	42
17	Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms. Environmental Science: Nano, 2020, 7, 105-115.	4.3	42
18	Predictive modeling of nanomaterial exposure effects in biological systems. International Journal of Nanomedicine, 2013, 8 Suppl 1, 31.	6.7	40

STACEY L HARPER

#	Article	IF	CITATIONS
19	The Impact of Surface Ligands and Synthesis Method on the Toxicity of Glutathione-Coated Gold Nanoparticles. Nanomaterials, 2014, 4, 355-371.	4.1	40
20	The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein Journal of Nanotechnology, 2015, 6, 1752-1762.	2.8	40
21	Pesticide Encapsulation at the Nanoscale Drives Changes to the Hydrophobic Partitioning and Toxicity of an Active Ingredient. Nanomaterials, 2019, 9, 81.	4.1	39
22	Toxicity of micro and nano tire particles and leachate for model freshwater organisms. Journal of Hazardous Materials, 2022, 429, 128319.	12.4	39
23	Nitric Oxide–Releasing Nanoparticles Prevent Propionibacterium acnes– Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response. Journal of Investigative Dermatology, 2015, 135, 2723-2731.	0.7	38
24	Informatics and standards for nanomedicine technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 511-532.	6.1	36
25	Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials, 2021, 11, 1516.	4.1	35
26	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
27	<p>Size-Dependent Interactions of Lipid-Coated Gold Nanoparticles: Developing a Better Mechanistic Understanding Through Model Cell Membranes and in vivo Toxicity</p> . International Journal of Nanomedicine, 2020, Volume 15, 4091-4104.	6.7	31
28	Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity. Journal of Nanoparticle Research, 2015, 17, 250.	1.9	30
29	Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein Journal of Nanotechnology, 2015, 6, 1568-1579.	2.8	29
30	Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?. Nanomaterials, 2020, 10, 2493.	4.1	28
31	The impact of aminated surface ligands and silica shells on the stability, uptake, and toxicity of engineered silver nanoparticles. Journal of Nanoparticle Research, 2014, 16, 2761.	1.9	22
32	Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules, 2019, 24, 4458.	3.8	22
33	Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environmental Science: Nano, 2018, 5, 1473-1481.	4.3	19
34	Effect of Nanoplastic Type and Surface Chemistry on Particle Agglomeration over a Salinity Gradient. Environmental Toxicology and Chemistry, 2021, 40, 1820-1826.	4.3	19
35	In Vivo Toxicity Assessment of Chitosan-Coated Lignin Nanoparticles in Embryonic Zebrafish (Danio) Tj ETQq1 1	0.784314 4.1	rgBT /Over or
36	Adaptive methodology to determine hydrophobicity of nanomaterials in situ. PLoS ONE, 2020, 15, e0233844.	2.5	16

3

STACEY L HARPER

#	Article	IF	CITATIONS
37	What is "Environmentally Relevant� A framework to advance research on the environmental fate and effects of engineered nanomaterials. Environmental Science: Nano, 2021, 8, 2414-2429.	4.3	16
38	Evaluating the use of zinc oxide and titanium dioxide nanoparticles in a metalworking fluid from a toxicological perspective. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	14
39	Toxicological Assessment of a Lignin Core Nanoparticle Doped with Silver as an Alternative to Conventional Silver Core Nanoparticles. Antibiotics, 2018, 7, 40.	3.7	14
40	Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. Nanomaterials, 2021, 11, 1015.	4.1	13
41	S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 283-291.	3.3	12
42	Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda–cyhalothrin to Daphnia magna. Science of the Total Environment, 2015, 538, 683-691.	8.0	10
43	Nanoinformatics workshop report: current resources, community needs and the proposal of a collaborative framework for data sharing and information integration. Computational Science & Discovery, 2013, 6, 014008.	1.5	9
44	Stability and Biological Responses of Zinc Oxide Metalworking Nanofluids (ZnO MWnFâ,,¢) using Dynamic Light Scattering and Zebrafish Assays. Tribology Transactions, 2014, 57, 730-739.	2.0	9
45	Visualization tool for correlating nanomaterial properties and biological responses in zebrafish. Environmental Science: Nano, 2016, 3, 1280-1292.	4.3	8
46	Preliminary Examination of the Toxicity of Spalting Fungal Pigments: A Comparison between Extraction Methods. Journal of Fungi (Basel, Switzerland), 2021, 7, 155.	3.5	7
47	Hybrid Polyoxometalate Salt Adhesion by Butyltin Functionalization. ACS Applied Materials & Interfaces, 2021, 13, 19497-19506.	8.0	4
48	Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning. Beilstein Journal of Nanotechnology, 2021, 12, 1297-1325.	2.8	2
49	NEIMiner: A model driven data mining system for studying environmental impact of nanomaterials. , 2012, , .		1
50	Development of an option in Nanotechnology: Elements of Student learning. , 2011, , .		0
51	Monoalkyl Tin Nanoâ€Cluster Films Reveal a Low Environmental Impact under Simulated Natural Conditions. Environmental Toxicology and Chemistry, 2019, 38, 2651-2658.	4.3	0