List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9777313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity, 2007, 27, 670-684.	6.6	1,695
2	Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunology, 2003, 4, 225-234.	7.0	1,621
3	Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunology, 2003, 4, 1191-1198.	7.0	1,605
4	Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity, 2007, 27, 281-295.	6.6	1,542
5	Effector and memory T-cell differentiation: implications for vaccine development. Nature Reviews Immunology, 2002, 2, 251-262.	10.6	1,524
6	Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520, 553-557.	13.7	1,255
7	Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Reviews Immunology, 2012, 12, 749-761.	10.6	1,203
8	Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naÃ ⁻ ve cells. Nature Immunology, 2001, 2, 415-422.	7.0	1,130
9	Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunology, 2005, 6, 1236-1244.	7.0	1,055
10	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	13.5	1,044
11	Molecular and Functional Profiling of Memory CD8 T Cell Differentiation. Cell, 2002, 111, 837-851.	13.5	873
12	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
13	Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell, 2015, 160, 745-758.	13.5	547
14	Estimating the Precursor Frequency of Naive Antigen-specific CD8 T Cells. Journal of Experimental Medicine, 2002, 195, 657-664.	4.2	541
15	Heterologous immunity provides a potent barrier to transplantation tolerance. Journal of Clinical Investigation, 2003, 111, 1887-1895.	3.9	535
16	Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 2017, 7, 1420-1435.	7.7	507
17	Transcriptional Repressor Blimp-1 Promotes CD8+ T Cell Terminal Differentiation and Represses the Acquisition of Central Memory T Cell Properties. Immunity, 2009, 31, 296-308.	6.6	506
18	Heterogeneity and Cell-Fate Decisions in Effector and Memory CD8+ T Cell Differentiation during Viral Infection. Immunity, 2007, 27, 393-405.	6.6	502

#	Article	IF	CITATIONS
19	Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proceedings of the United States of America, 2004, 101, 16004-16009.	3.3	444
20	The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology, 2016, 16, 102-111.	10.6	440
21	Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nature Medicine, 2003, 9, 540-547.	15.2	352
22	The LIN-2/LIN-7/LIN-10 Complex Mediates Basolateral Membrane Localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells. Cell, 1998, 94, 761-771.	13.5	349
23	An Interleukin-21- Interleukin-10-STAT3 Pathway Is Critical for Functional Maturation of Memory CD8+ T Cells. Immunity, 2011, 35, 792-805.	6.6	331
24	CD4+ T Cell Help Guides Formation of CD103+ Lung-Resident Memory CD8+ T Cells during Influenza Viral Infection. Immunity, 2014, 41, 633-645.	6.6	309
25	KLRG1+ Effector CD8+ T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity, 2018, 48, 716-729.e8.	6.6	300
26	Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8 ⁺ T-cell immunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1210-1215.	3.3	298
27	The Transcription Factor FoxO1 Sustains Expression of the Inhibitory Receptor PD-1 and Survival of Antiviral CD8+ T Cells during Chronic Infection. Immunity, 2014, 41, 802-814.	6.6	294
28	IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity. Cell, 2015, 161, 750-761.	13.5	268
29	Differential Expression of Ly6C and T-bet Distinguish Effector and Memory Th1 CD4+ Cell Properties during Viral Infection. Immunity, 2011, 35, 633-646.	6.6	265
30	Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ TÂcells in tumors. Immunity, 2021, 54, 1561-1577.e7.	6.6	260
31	LET-23 Receptor Localization by the Cell Junction Protein LIN-7 during C. elegans Vulval Induction. Cell, 1996, 85, 195-204.	13.5	259
32	Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 2012, 33, 4957-4964.	5.7	257
33	The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity, 2015, 43, 690-702.	6.6	252
34	In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development. Journal of Immunology, 2010, 185, 313-326.	0.4	243
35	The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal of Experimental Medicine, 2015, 212, 2041-2056.	4.2	238
36	Generation of effector CD8 ⁺ T cells and their conversion to memory T cells. Immunological Reviews, 2010, 236, 151-166.	2.8	229

#	Article	IF	CITATIONS
37	The MicroRNA miR-181 Is a Critical Cellular Metabolic Rheostat Essential for NKT Cell Ontogenesis and Lymphocyte Development and Homeostasis. Immunity, 2013, 38, 984-997.	6.6	223
38	Loss of CD127 Expression Defines an Expansion of Effector CD8+ T Cells in HIV-Infected Individuals. Journal of Immunology, 2005, 174, 2900-2909.	0.4	212
39	Effector CD8 T Cell Development: A Balancing Act between Memory Cell Potential and Terminal Differentiation. Journal of Immunology, 2008, 180, 1309-1315.	0.4	207
40	Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell, 2019, 179, 236-250.e18.	13.5	206
41	Transcription Factor STAT3 and Type I Interferons Are Corepressive Insulators for Differentiation of Follicular Helper and T Helper 1 Cells. Immunity, 2014, 40, 367-377.	6.6	202
42	Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8 + T Cell Terminal Differentiation and Loss of Multipotency. Immunity, 2017, 46, 596-608.	6.6	202
43	Lung Airway-Surveilling CXCR3hi Memory CD8+ T Cells Are Critical for Protection against Influenza A Virus. Immunity, 2013, 39, 939-948.	6.6	198
44	Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16601-16606.	3.3	186
45	Identification of an Evolutionarily Conserved Heterotrimeric Protein Complex Involved in Protein Targeting. Journal of Biological Chemistry, 1998, 273, 31633-31636.	1.6	175
46	The role of programming in memory T-cell development. Current Opinion in Immunology, 2004, 16, 217-225.	2.4	173
47	Expression of IL-7 receptor α is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11730-11735.	3.3	166
48	Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells. Nature Immunology, 2015, 16, 871-879.	7.0	159
49	Requirement of B Cells for Generating CD4+ T Cell Memory. Journal of Immunology, 2009, 182, 1868-1876.	0.4	153
50	A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nature Immunology, 2016, 17, 422-432.	7.0	145
51	Interleukin-10 from CD4 ⁺ follicular regulatory T cells promotes the germinal center response. Science Immunology, 2017, 2, .	5.6	139
52	Models of CD8+ Responses: 1. What is the Antigen-independent Proliferation Program. Journal of Theoretical Biology, 2003, 221, 585-598.	0.8	137
53	Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nature Medicine, 2015, 21, 327-334.	15.2	129
54	IMMUNOLOGY: CD8 T Cells Remember with a Little Help. Science, 2003, 300, 263-265.	6.0	118

#	Article	IF	CITATIONS
55	A central role for Notch in effector CD8+ T cell differentiation. Nature Immunology, 2014, 15, 1143-1151.	7.0	115
56	Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. Journal of Experimental Medicine, 2018, 215, 877-893.	4.2	111
57	Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Reports, 2018, 25, 1204-1213.e4.	2.9	110
58	A Specific Role for B Cells in the Generation of CD8 T Cell Memory by Recombinant <i>Listeria monocytogenes</i> . Journal of Immunology, 2003, 170, 1443-1451.	0.4	108
59	Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFNÎ ³ . Cancer Research, 2014, 74, 3205-3217.	0.4	107
60	Effects of Signal 3 during CD8 T cell priming: Bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine, 2009, 27, 2177-2187.	1.7	106
61	Epigenetic Modifications Induced by Blimp-1 Regulate CD8+ T Cell Memory Progression during Acute Virus Infection. Immunity, 2013, 39, 661-675.	6.6	106
62	ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. Journal of Experimental Medicine, 2018, 215, 1153-1168.	4.2	106
63	TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile Encephalitis. Journal of Immunology, 2010, 185, 2989-2997.	0.4	104
64	TCR Signal Transduction in Antigen-Specific Memory CD8 T Cells. Journal of Immunology, 2003, 170, 5455-5463.	0.4	101
65	Differential Localization of Effector and Memory CD8 T Cell Subsets in Lymphoid Organs during Acute Viral Infection. Journal of Immunology, 2010, 185, 5315-5325.	0.4	100
66	The interface between transcriptional and epigenetic control of effector and memory <scp>CD</scp> 8 ⁺ T ell differentiation. Immunological Reviews, 2014, 261, 157-168.	2.8	93
67	STAT4 and T-bet control follicular helper T cell development in viral infections. Journal of Experimental Medicine, 2018, 215, 337-355.	4.2	89
68	Mitochondrial DNA stress signalling protects the nuclear genome. Nature Metabolism, 2019, 1, 1209-1218.	5.1	87
69	Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. Journal of Experimental Medicine, 2020, 217, .	4.2	84
70	Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion, 2007, 7, 374-385.	1.6	83
71	Generating diversity: transcriptional regulation of effector and memory CD8 ⁺ Tâ€cell differentiation. Immunological Reviews, 2010, 235, 219-233.	2.8	82
72	ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. Journal of Clinical Investigation, 2016, 126, 3905-3916.	3.9	81

#	Article	IF	CITATIONS
73	Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. Journal of Clinical Investigation, 2014, 124, 3455-3468.	3.9	79
74	BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7418-7425.	3.3	76
75	Increased Numbers of Preexisting Memory CD8 T Cells and Decreased T-bet Expression Can Restrain Terminal Differentiation of Secondary Effector and Memory CD8 T Cells. Journal of Immunology, 2011, 187, 4068-4076.	0.4	76
76	Formation of IL-7Rαhigh and IL-7Rαlow CD8 T Cells during Infection Is Regulated by the Opposing Functions of GABPα and Gfi-1. Journal of Immunology, 2008, 180, 5309-5319.	0.4	72
77	Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging, 2015, 7, 38-52.	1.4	72
78	MyD88 Plays a Critical T Cell-Intrinsic Role in Supporting CD8 T Cell Expansion during Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2008, 181, 3804-3810.	0.4	69
79	Reducing Mitochondrial ROS Improves Disease-related Pathology in a Mouse Model of Ataxia-telangiectasia. Molecular Therapy, 2013, 21, 42-48.	3.7	66
80	Identification of an Evolutionarily Conserved Transcriptional Signature of CD8 Memory Differentiation That Is Shared by T and B Cells. Journal of Immunology, 2008, 181, 1859-1868.	0.4	65
81	The Selective Increase in Caspase-3 Expression in Effector but Not Memory T Cells Allows Susceptibility to Apoptosis. Journal of Immunology, 2004, 173, 5425-5433.	0.4	64
82	Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget, 2018, 9, 25808-25825.	0.8	64
83	Diversity in CD8+ T cell differentiation. Current Opinion in Immunology, 2009, 21, 291-297.	2.4	61
84	TLR4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A Differentially Regulate Effector and Memory CD8+ T Cell Differentiation. Journal of Immunology, 2014, 192, 4221-4232.	0.4	53
85	Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity. Journal of Immunology, 2017, 199, 1250-1260.	0.4	53
86	The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa. ELife, 2015, 4, e04851.	2.8	53
87	Induction of Telomerase Activity and Maintenance of Telomere Length in Virus-Specific Effector and Memory CD8+ T Cells. Journal of Immunology, 2003, 170, 147-152.	0.4	52
88	Viperin Is Highly Induced in Neutrophils and Macrophages during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2010, 184, 5723-5731.	0.4	52
89	Smad4 Promotes Differentiation of Effector and Circulating Memory CD8 T Cells but Is Dispensable for Tissue-Resident Memory CD8 T Cells. Journal of Immunology, 2015, 194, 2407-2414.	0.4	52
90	CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7– and IL-15–dependent niches. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8278-8283.	3.3	50

#	Article	IF	CITATIONS
91	CD4+ and CD8+ T cell–dependent antiviral immunity requires STIM1 and STIM2. Journal of Clinical Investigation, 2014, 124, 4549-4563.	3.9	50
92	Tick-TOX, it's time for T cell exhaustion. Nature Immunology, 2019, 20, 1092-1094.	7.0	49
93	A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019, 10, 794.	5.8	46
94	Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance <i>EGFR</i> Mutations. Cancer Research, 2020, 80, 2017-2030.	0.4	46
95	A Phase I Study of APX005M and Cabiralizumab with or without Nivolumab in Patients with Melanoma, Kidney Cancer, or Non–Small Cell Lung Cancer Resistant to Anti-PD-1/PD-L1. Clinical Cancer Research, 2021, 27, 4757-4767.	3.2	44
96	T-cell TGF-Î ² signaling abrogation restricts medulloblastoma progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3458-66.	3.3	43
97	Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunologic Research, 2009, 45, 46-61.	1.3	42
98	The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates. Journal of Experimental Medicine, 2021, 218, .	4.2	41
99	Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Current Opinion in Immunology, 2017, 46, 38-44.	2.4	40
100	JNK1 Is Essential for CD8+ T Cell-Mediated Tumor Immune Surveillance. Journal of Immunology, 2005, 175, 5783-5789.	0.4	33
101	IL-7 plays a critical role for the homeostasis of allergen-specific memory CD4 T cells in the lung and airways. Scientific Reports, 2017, 7, 11155.	1.6	32
102	Cutting Edge: Memory CD8 T Cell Maturation Occurs Independently of CD8αα. Journal of Immunology, 2005, 175, 5619-5623.	0.4	29
103	Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults. Journal of Immunology, 2020, 204, 1661-1673.	0.4	28
104	Enhanced Expression of Cell Cycle Regulatory Genes in Virus-Specific Memory CD8 + T Cells. Journal of Virology, 2004, 78, 10953-10959.	1.5	27
105	IL-10 induces a STAT3-dependent autoregulatory loop in T _H 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Science Immunology, 2016, 1, .	5.6	26
106	Characterization of Diabetogenic CD8+ T Cells. Journal of Biological Chemistry, 2016, 291, 11230-11240.	1.6	25
107	The chronicles of T-cell exhaustion. Nature, 2017, 543, 190-191.	13.7	24
108	Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Seminars in Immunology, 2021, 52, 101485.	2.7	24

#	Article	IF	CITATIONS
109	NK Cell Responses Redefine Immunological Memory. Journal of Immunology, 2016, 197, 2963-2970.	0.4	23
110	IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Scientific Reports, 2016, 6, 30636.	1.6	22
111	ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Reports, 2021, 36, 109602.	2.9	22
112	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	6.6	20
113	Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathogens, 2017, 13, e1006544.	2.1	19
114	Active mTORC2 Signaling in Naive T Cells Suppresses Bone Marrow Homing by Inhibiting CXCR4 Expression. Journal of Immunology, 2018, 201, 908-915.	0.4	18
115	Probing the Diversity of TÂCell Dysfunction in Cancer. Cell, 2016, 166, 1362-1364.	13.5	16
116	IL-4 induces a suppressive IL-10-producing CD8+ T cell population via a Cdkn2a-dependent mechanism. Journal of Leukocyte Biology, 2013, 94, 1103-1112.	1.5	15
117	Aberrant CD8+ T-Cell Responses and Memory Differentiation upon Viral Infection of an Ataxia-Telangiectasia Mouse Model Driven by Hyper-Activated Akt and mTORC1 Signaling. American Journal of Pathology, 2011, 178, 2740-2751.	1.9	11
118	IL-7 Knocks the Socs Off Chronic Viral Infection. Cell, 2011, 144, 467-468.	13.5	9
119	The landscape of novel and complementary targets for immunotherapy: an analysis of gene expression in the tumor microenvironment. Oncotarget, 2019, 10, 4532-4545.	0.8	8
120	Patients with HIV-associated cancers have evidence of increased T cell dysfunction and exhaustion prior to cancer diagnosis. , 2022, 10, e004564.		7
121	Trials and Tribble-ations of tissue TRM cells. Nature Immunology, 2018, 19, 102-103.	7.0	6
122	T Cell Metabolism in a State of Flux. Immunity, 2019, 51, 783-785.	6.6	6
123	1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Developmental Cell, 2021, 56, 3128-3145.e15.	3.1	6
124	BRAF-targeted therapy alters the functions of intratumoral CD4+T cells to inhibit melanoma progression. Oncolmmunology, 2014, 3, e29126.	2.1	5
125	Celebrating Diversity in Memory T Cells. Journal of Immunology, 2014, 192, 837-839.	0.4	5
126	Generating CD8ÂT Cell Heterogeneity: Attack of the Clones. Immunity, 2013, 39, 203-205.	6.6	4

#	Article	IF	CITATIONS
127	Final results of a phase I prospective trial evaluating the combination of stereotactic body radiotherapy (SBRT) with concurrent pembrolizumab in patients with metastatic non-small cell lung cancer (NSCLC) or melanoma Journal of Clinical Oncology, 2018, 36, 9099-9099.	0.8	3
128	Motility Matters: How CD8 ⁺ T-Cell Trafficking Influences Effector and Memory Cell Differentiation. Cold Spring Harbor Perspectives in Biology, 2021, 13, a038075.	2.3	2
129	Immigration in science. Journal of Experimental Medicine, 2020, 217, .	4.2	2
130	Regulating the diverse outcomes of interferon's interference. Trends in Immunology, 2014, 35, 353-354.	2.9	1
131	T-bet in Tfh cells: Now you see me, now you don't. Journal of Experimental Medicine, 2018, 215, 2697-2698.	4.2	1
132	Counting on You: How MHC Tetramers Revolutionized the Study of T Cell Memory and CD8+ T Cell Exhaustion. Journal of Immunology, 2021, 207, 1225-1227.	0.4	1
133	Elevated murine HB-EGF confers sensitivity to diphtheria toxin in EGFR-mutant lung adenocarcinoma. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	1
134	The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal of Cell Biology, 2015, 211, 21130IA258.	2.3	1
135	Decreasing the TORC on memory CD8 T ell formation. Immunology and Cell Biology, 2009, 87, 571-573.	1.0	0
136	Like Parent, Like Child: Inheritance of Effector CD8+ T Cell Traits. Immunity, 2010, 33, 296-298.	6.6	0