Yangyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surpassing the stiffness-extensibility trade-off of elastomers via mastering the hydrogen-bonding clusters. Matter, 2022, 5, 237-252.	5.0	40
2	Modular Approach for the Synthesis of Bottlebrush Diblock Copolymers from Poly(Glycidyl) Tj ETQq0 0 0 rgBT 488-497.	Overlock 1 2.2	0 Tf 50 707 ⁻ 1
3	Upcycling of semicrystalline polymers by compatibilization: mechanism and location of compatibilizers. RSC Advances, 2022, 12, 10886-10894.	1.7	10
4	Small angle scattering of diblock copolymers profiled by machine learning. Journal of Chemical Physics, 2022, 156, 131101.	1.2	3
5	Ion Atmosphere of Wormlike Micelles Profiled by Contrast Variation Small-Angle Neutron Scattering. ACS Macro Letters, 2022, 11, 66-71.	2.3	0
6	Ionic Conductivity Enhancement of Polymer Electrolytes by Directed Crystallization. ACS Macro Letters, 2022, 11, 595-602.	2.3	16
7	Decoding polymer self-dynamics using a two-step approach. Physical Review E, 2022, 106, .	0.8	0
8	CENTAUR—The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. Review of Scientific Instruments, 2022, 93, .	0.6	9
9	EXPANSE: A time-of-flight EXPanded Angle Neutron Spin Echo spectrometer at the Second Target Station of the Spallation Neutron Source. Review of Scientific Instruments, 2022, 93, .	0.6	4
10	Chain flexibility and glass transition temperatures of poly(n-alkyl (meth)acrylate)s: Implications of tacticity and chain dynamics. Polymer, 2021, 213, 123207.	1.8	17
11	An exact inversion method for extracting orientation ordering by small-angle scattering. Physical Chemistry Chemical Physics, 2021, 23, 4120-4132.	1.3	4
12	Spatiotemporal mapping of mesoscopic liquid dynamics. Physical Review E, 2021, 103, 022609.	0.8	6
13	Quantification of Deformation-Induced Concentration Fluctuations in Polymeric Liquids by Small-Angle Neutron Scattering. Macromolecules, 2021, 54, 3531-3542.	2.2	3
14	Molecular View on Mechanical Reinforcement in Polymer Nanocomposites. Physical Review Letters, 2021, 126, 117801.	2.9	23
15	Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO ₂ Permeability and Mechanical Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 27411-27418.	4.0	14
16	Rotational Dynamics of an Amphidynamic Zirconium Metal–Organic Framework Determined by Dielectric Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 5644-5648.	2.1	5
17	Spatial correlations of entangled polymer dynamics. Physical Review E, 2021, 104, 024503.	0.8	5
18	Synthesis of Poly(ionic Liquid)s- <i>block</i> -poly(methyl Methacrylate) Copolymer-Grafted Silica Particle Brushes with Enhanced CO ₂ Permeability and Mechanical Performance. Langmuir, 2021, 37, 10875-10881.	1.6	7

#	Article	IF	CITATIONS
19	Determining population densities in bimodal micellar solutions using contrast-variation small angle neutron scattering. Journal of Chemical Physics, 2020, 153, 184902.	1.2	3
20	Phosphonium-Based Polyzwitterions: Influence of Ionic Structure and Association on Mechanical Properties. Macromolecules, 2020, 53, 11009-11018.	2.2	15
21	Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Applied Energy Materials, 2020, 3, 8871-8881.	2.5	30
22	Spatial correlation functions of paracrystals with radial symmetry. Physical Review E, 2020, 102, 032110.	0.8	0
23	Quantitative examination of a fundamental assumption in small-angle neutron scattering studies of deformed polymer melts. Polymer, 2020, 204, 122698.	1.8	7
24	Addition of Short Polymer Chains Mechanically Reinforces Glassy Poly(2-vinylpyridine)–Silica Nanoparticle Nanocomposites. ACS Applied Nano Materials, 2020, 3, 3427-3438.	2.4	21
25	Uncommon nonlinear rheological phenomenology in uniaxial extension of polystyrene solutions and melts. Soft Matter, 2020, 16, 3705-3716.	1.2	4
26	Enhanced Rotation by Ground State Destabilization in Amphidynamic Crystals of a Dipolar 2,3-Difluorophenylene Rotator as Established by Solid State ² H NMR and Dielectric Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 15391-15398.	1.5	12
27	Study of the Segmental Dynamics and Ion Transport of Solid Polymer Electrolytes in the Semi-crystalline State. Frontiers in Chemistry, 2020, 8, 592604.	1.8	8
28	Structural properties of the evolution of CTAB/NaSal micelles investigated by SANS and rheometry. Physical Chemistry Chemical Physics, 2019, 21, 18346-18351.	1.3	21
29	Determining Gyration Tensor of Orienting Macromolecules through Their Scattering Signature. Journal of Physical Chemistry Letters, 2019, 10, 3978-3984.	2.1	11
30	Elucidating the impact of extreme nanoscale confinement on segmental and chain dynamics of unentangled poly(cis-1,4-isoprene). European Physical Journal E, 2019, 42, 137.	0.7	3
31	Orientational Distribution Function of Aligned Elongated Molecules and Particulates Determined from Their Scattering Signature. ACS Macro Letters, 2019, 8, 1257-1262.	2.3	9
32	Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids. Nanoscale, 2019, 11, 1515-1519.	2.8	82
33	Polyamidoxime chain length drives emergent metal-binding phenomena. Physical Chemistry Chemical Physics, 2019, 21, 554-560.	1.3	4
34	Influence of side chain isomerism on the rigidity of poly(3-alkylthiophenes) in solutions revealed by neutron scattering. Physical Chemistry Chemical Physics, 2019, 21, 7745-7749.	1.3	15
35	Chain conformation of polymer melts with associating groups. Journal of Physics Communications, 2019, 3, 035007.	0.5	10
36	Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Molecular Systems Design and Engineering, 2019, 4, 379-385.	1.7	31

#	Article	IF	CITATIONS
37	Comment on "Relating Chain Conformations to Extensional Stress in Entangled Polymer Melts― Physical Review Letters, 2019, 122, 059803.	2.9	1
38	Charge Transport in Imidazolium-Based Homo- and Triblock Poly(ionic liquid)s. Macromolecules, 2019, 52, 620-628.	2.2	13
39	Local elasticity in nonlinear rheology of interacting colloidal glasses revealed by neutron scattering and rheometry. Physical Chemistry Chemical Physics, 2019, 21, 38-45.	1.3	7
40	Strain heterogeneity in sheared colloids revealed by neutron scattering. Physical Chemistry Chemical Physics, 2018, 20, 6050-6054.	1.3	0
41	Superstretchable, Selfâ€Healing Polymeric Elastomers with Tunable Properties. Advanced Functional Materials, 2018, 28, 1800741.	7.8	162
42	Polymerized ionic liquids: Effects of counterâ€anions on ion conduction and polymerization kinetics. Journal of Polymer Science Part A, 2018, 56, 1346-1357.	2.5	20
43	Design, synthesis, and characterization of lightly sulfonated multigraft acrylate-based copolymer superelastomers. RSC Advances, 2018, 8, 5090-5098.	1.7	4
44	Characterization of microscopic deformation through two-point spatial correlation functions. Physical Review E, 2018, 97, 012605.	0.8	18
45	Molecular Dynamics Investigation of the Relaxation Mechanism of Entangled Polymers after a Large Step Deformation. ACS Macro Letters, 2018, 7, 190-195.	2.3	39
46	All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior. Polymer Chemistry, 2018, 9, 160-168.	1.9	18
47	Scaling Behavior of Anisotropy Relaxation in Deformed Polymers. Physical Review Letters, 2018, 121, 117801.	2.9	13
48	Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers. Polymer, 2017, 116, 218-225.	1.8	13
49	All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties. Polymer Chemistry, 2017, 8, 5741-5748.	1.9	34
50	Reconstruction of three-dimensional anisotropic structure from small-angle scattering experiments. Physical Review E, 2017, 96, 022612.	0.8	16
51	Dynamic-Mechanical and Dielectric Evidence of Long-Lived Mesoscale Organization in Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 3544-3548.	2.1	33
52	Fingerprinting Molecular Relaxation in Deformed Polymers. Physical Review X, 2017, 7, .	2.8	41
53	Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids. Journal of Chemical Physics, 2016, 144, 151104.	1.2	16
54	Ionic Transport and Dielectric Relaxation in Polymer Electrolytes. Advances in Dielectrics, 2016, , 131-156.	1.2	3

#	Article	IF	CITATIONS
55	Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects. Physical Review Letters, 2016, 117, 156001.	2.9	16
56	Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids. Macromolecules, 2016, 49, 4557-4570.	2.2	121
57	Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization. Macromolecules, 2016, 49, 4691-4698.	2.2	23
58	Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide. ACS Macro Letters, 2016, 5, 199-202.	2.3	24
59	Conduction below 100°C in nominal Li6ZnNb4O14. Journal of Materials Science, 2016, 51, 854-860.	1.7	5
60	Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): synthesis and characterization. Polymer Chemistry, 2016, 7, 680-688.	1.9	37
61	Design of superionic polymer electrolytes. Current Opinion in Chemical Engineering, 2015, 7, 113-119.	3.8	46
62	Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups. Macromolecules, 2015, 48, 4461-4470.	2.2	158
63	Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size. Chemistry of Materials, 2015, 27, 2557-2565.	3.2	10
64	All-Acrylic Multigraft Copolymers: Effect of Side Chain Molecular Weight and Volume Fraction on Mechanical Behavior. Industrial & Engineering Chemistry Research, 2015, 54, 9566-9576.	1.8	24
65	Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure. Journal of Physical Chemistry Letters, 2015, 6, 3961-3965.	2.1	21
66	Heterogeneous Nature of Relaxation Dynamics of Room-Temperature Ionic Liquids (EMIm) ₂ [Co(NCS) ₄] and (BMIm) ₂ [Co(NCS) ₄]. Journal of Physical Chemistry C, 2015, 119, 20363-20368.	1.5	24
67	Resolving the Grain Boundary and Lattice Impedance of Hotâ€Pressed Li ₇ La ₃ Zr ₂ O ₁₂ Garnet Electrolytes. ChemElectroChem, 2014, 1, 375-378.	1.7	112
68	Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. Journal of Chemical Physics, 2014, 140, 104510.	1.2	35
69	Design of superionic polymers—New insights from Walden plot analysis. Solid State Ionics, 2014, 262, 782-784.	1.3	54
70	Letter to the Editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. Journal of Rheology, 2014, 58, 1059-1069.	1.3	36
71	Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 2014, 10, 3536-3540.	1.2	120
72	Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 2014, 55, 4067-4076.	1.8	136

#	Article	IF	CITATIONS
73	Fabrication and characterization of poly(l-lactic acid) gels induced by fibrous complex crystallization with solvents. Polymer, 2014, 55, 4369-4378.	1.8	23
74	Interplay Between Hydrophobic Aggregation and Charge Transport in the Ionic Liquid Methyltrioctylammonium Bis(trifluoromethylsulfonyl)imide. Journal of Physical Chemistry B, 2014, 118, 783-790.	1.2	47
75	Synthesis and Characterization of Ureidopyrimidone Telechelics by CuAAC "Click―Reaction: Effect of <i>T</i> _g and Polarity. Macromolecules, 2014, 47, 5040-5050.	2.2	30
76	Observation of highly decoupled conductivity in protic ionic conductors. Physical Chemistry Chemical Physics, 2014, 16, 9123-9127.	1.3	37
77	Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 2013, 87, 042308.	0.8	84
78	Dynamic crossover and the Debye–Stokes–Einstein relation in liquid N,N-diethyl-3-methylbenzamide (DEET). Soft Matter, 2013, 9, 10373.	1.2	17
79	High Pressure as a Key Factor to Identify the Conductivity Mechanism in Protic Ionic Liquids. Physical Review Letters, 2013, 111, 225703.	2.9	65
80	New Experiments for Improved Theoretical Description of Nonlinear Rheology of Entangled Polymers. Macromolecules, 2013, 46, 3147-3159.	2.2	70
81	Dielectric Relaxation and Rheological Behavior of Supramolecular Polymeric Liquid. Macromolecules, 2013, 46, 3160-3166.	2.2	56
82	Chain and Segmental Dynamics of Poly(2-vinylpyridine) Nanocomposites. Macromolecules, 2013, 46, 4168-4173.	2.2	92
83	Ionic Transport, Microphase Separation, and Polymer Relaxation in Poly(propylene glycol) and Lithium Perchlorate Mixtures. Macromolecules, 2013, 46, 9380-9389.	2.2	31
84	Rheological Study of Mutarotation of Fructose in Anhydrous State. Journal of Physical Chemistry B, 2013, 117, 1475-1479.	1.2	8
85	Ionic Conductivity and Glass Transition of Phosphoric Acids. Journal of Physical Chemistry B, 2013, 117, 8003-8009.	1.2	34
86	Rheological studies of tautomerization kinetics in supercooled glibenclamide drug. Physical Review E, 2012, 86, 067104.	0.8	3
87	Linear Viscoelastic and Uniaxial Extensional Rheology of Alkali Metal Neutralized Sulfonated Oligostyrene Ionomer Melts. Macromolecules, 2012, 45, 481-490.	2.2	53
88	Effect of Polar Interactions on Polymer Dynamics. Macromolecules, 2012, 45, 8430-8437.	2.2	59
89	Letter to the editor: Cone partitioned plate (CPP) vs circular couette. Journal of Rheology, 2012, 56, 675-681.	1.3	9
90	Glassy dynamics of hydrogen-bonded heteroditopic molecules. Polymer, 2012, 53, 4455-4460.	1.8	7

6

#	Article	IF	CITATIONS
91	Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes. Physical Review Letters, 2012, 108, 088303.	2.9	139
92	Characterizing State of Chain Entanglement in Entangled Polymer Solutions during and after Large Shear Deformation. Macromolecules, 2012, 45, 2514-2521.	2.2	20
93	Basic characteristics of uniaxial extension rheology: Comparing monodisperse and bidisperse polymer melts. Journal of Rheology, 2011, 55, 1247-1270.	1.3	37
94	Salient Features in Uniaxial Extension of Polymer Melts and Solutions: Progressive Loss of Entanglements, Yielding, Non-Gaussian Stretching, and Rupture. Macromolecules, 2011, 44, 5427-5435.	2.2	43
95	Rupture in rapid uniaxial extension of linear entangled melts. Rheologica Acta, 2010, 49, 1179-1185.	1.1	31
96	Exploring stress overshoot phenomenon upon startup deformation of entangled linear polymeric liquids. Journal of Rheology, 2009, 53, 1389-1401.	1.3	62
97	From elastic deformation to terminal flow of a monodisperse entangled melt in uniaxial extension. Journal of Rheology, 2008, 52, 1275-1290.	1.3	66
98	Elastic Breakup in Uniaxial Extension of Entangled Polymer Melts. Physical Review Letters, 2007, 99, 237801.	2.9	83
99	New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network. Journal of Chemical Physics, 2007, 127, 064903.	1.2	163
100	Low-frequency dynamics in ionic liquids: Comparison of experiments and the random barrier model. Physical Chemistry Chemical Physics, 0, , .	1.3	1