## FabÃ-ola Mara Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977657/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Current<br>Neuropharmacology, 2023, 21, 164-182.                                                               | 2.9 | 3         |
| 2  | Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of<br>Huntington's disease. Scientific Reports, 2022, 12, 5621.                                            | 3.3 | 3         |
| 3  | mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve<br>Huntington's disease phenotype. Scientific Reports, 2022, 12, .                                     | 3.3 | 2         |
| 4  | DYNLT1 gene expression is downregulated in whole blood of patients at different Huntington's<br>disease stages. Neurological Sciences, 2021, 42, 1963-1967.                                      | 1.9 | 3         |
| 5  | High-Throughput Sequencing of BACHD Mice Reveals Upregulation of Neuroprotective miRNAs at the<br>Pre-Symptomatic Stage of Huntington's Disease. ASN Neuro, 2021, 13, 175909142110098.           | 2.7 | 6         |
| 6  | Negative Modulation of the Metabotropic Glutamate Receptor Type 5 as a Potential Therapeutic<br>Strategy in Obesity and Binge-Like Eating Behavior. Frontiers in Neuroscience, 2021, 15, 631311. | 2.8 | 9         |
| 7  | Implications of VIP and PACAP in Parkinson's Disease: What do we Know So Far?. Current Medicinal Chemistry, 2021, 28, 1703-1715.                                                                 | 2.4 | 8         |
| 8  | Protective role of endocannabinoid signaling in an animal model of haloperidol-induced tardive dyskinesia. Pharmacology Biochemistry and Behavior, 2021, 206, 173193.                            | 2.9 | 4         |
| 9  | Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive<br>Impairment in Mice. Frontiers in Aging Neuroscience, 2021, 13, 731603.                       | 3.4 | 6         |
| 10 | Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model. Neuropharmacology, 2020, 162, 107826.                                                    | 4.1 | 9         |
| 11 | mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease.<br>Molecular Brain, 2020, 13, 118.                                                            | 2.6 | 20        |
| 12 | Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer's disease model mice in a<br>sex-selective manner. Science Signaling, 2020, 13, .                                           | 3.6 | 45        |
| 13 | 7-Deaza-7-fluoro-2′-C-methyladenosine inhibits Zika virus infection and viral-induced neuroinflammation. Antiviral Research, 2020, 180, 104855.                                                  | 4.1 | 8         |
| 14 | Cannabidiol anticonvulsant effect is mediated by the PI3KÎ <sup>3</sup> pathway. Neuropharmacology, 2020, 176, 108156.                                                                           | 4.1 | 25        |
| 15 | The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology, 2020, 160, 78-89.                                                                                                | 4.4 | 29        |
| 16 | Short and long TNFâ€alpha exposure recapitulates canonical astrogliosis events in humanâ€induced<br>pluripotent stem cellsâ€derived astrocytes. Glia, 2020, 68, 1396-1409.                       | 4.9 | 30        |
| 17 | Opposing roles of CB <sub>1</sub> and CB <sub>2</sub> cannabinoid receptors in the stimulant and rewarding effects of cocaine. British Journal of Pharmacology, 2019, 176, 1541-1551.            | 5.4 | 36        |
| 18 | Host Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal<br>Infection. Viruses, 2019, 11, 558.                                                                   | 3.3 | 13        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology, 2019, 160, 107785.                                                             | 4.1  | 18        |
| 20 | Alterations of Calcium Channels in a Mouse Model of Huntington's Disease and Neuroprotection by<br>Blockage of Ca <sub>V</sub> 1 Channels. ASN Neuro, 2019, 11, 175909141985681.                                     | 2.7  | 18        |
| 21 | In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent<br>enhancement and an antiviral peptide therapy. EBioMedicine, 2019, 44, 516-529.                                  | 6.1  | 27        |
| 22 | Zika Virus Transmission Through Blood Tissue Barriers. Frontiers in Microbiology, 2019, 10, 1465.                                                                                                                    | 3.5  | 28        |
| 23 | Metabotropic glutamate receptor 5 ablation accelerates age-related neurodegeneration and neuroinflammation. Neurochemistry International, 2019, 126, 218-228.                                                        | 3.8  | 24        |
| 24 | T-lymphocytes response persists following Plasmodium berghei strain Anka infection resolution and<br>may contribute to later experimental cerebral malaria outcomes. Journal of Neuroimmunology, 2019,<br>330, 5-11. | 2.3  | 1         |
| 25 | Synaptic Elimination in Neurological Disorders. Current Neuropharmacology, 2019, 17, 1071-1095.                                                                                                                      | 2.9  | 63        |
| 26 | Abnormalities in the Motor Unit of a Fast-Twitch Lower Limb Skeletal Muscle in Huntington's Disease.<br>ASN Neuro, 2019, 11, 175909141988621.                                                                        | 2.7  | 7         |
| 27 | NVP-BEZ235 (Dactolisib) Has Protective Effects in a Transgenic Mouse Model of Alzheimer's Disease.<br>Frontiers in Pharmacology, 2019, 10, 1345.                                                                     | 3.5  | 14        |
| 28 | Estradiol effect on short-term object memory under hypocholinergic condition. Brain Research<br>Bulletin, 2018, 140, 411-417.                                                                                        | 3.0  | 6         |
| 29 | Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature<br>Materials, 2018, 17, 971-977.                                                                                   | 27.5 | 74        |
| 30 | Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Frontiers in Pharmacology, 2018, 9, 145.                                                                                                     | 3.5  | 53        |
| 31 | The mGluR5 positive allosteric modulator VU0409551 improves synaptic plasticity and memory of a mouse model of Huntington's disease. Journal of Neurochemistry, 2018, 147, 222-239.                                  | 3.9  | 19        |
| 32 | Thiamine Deficiency Increases Ca2+ Current and CaV1.2 L-type Ca2+ Channel Levels in Cerebellum<br>Granular Neurons. Cellular and Molecular Neurobiology, 2017, 37, 453-460.                                          | 3.3  | 7         |
| 33 | Antidepressant-like effect of valproic acid—Possible involvement of PI3K/Akt/mTOR pathway.<br>Behavioural Brain Research, 2017, 329, 166-171.                                                                        | 2.2  | 31        |
| 34 | <i>N</i> -Methyl- <scp>d</scp> -Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced<br>by Zika Virus Infection. MBio, 2017, 8, .                                                                      | 4.1  | 70        |
| 35 | N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of<br>Huntington's disease. Neurobiology of Aging, 2017, 55, 1-10.                                                    | 3.1  | 24        |
| 36 | Muscle atrophy is associated with cervical spinal motoneuron loss in BACHD mouse model for<br>Huntington's disease. European Journal of Neuroscience, 2017, 45, 785-796.                                             | 2.6  | 21        |

FabÃola Mara Ribeiro

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of Dynein Axonemal Heavy Chain 6 Gene Expression as a Possible Biomarker for Huntington's<br>Disease: a Translational Study. Journal of Molecular Neuroscience, 2017, 63, 342-348.                           | 2.3 | 4         |
| 38 | A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and<br>Behavioral Outcomes Secondary to Experimental Cerebral Malaria. Molecular Neurobiology, 2017, 54,<br>7063-7082. | 4.0 | 25        |
| 39 | Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacological Research, 2017, 115, 179-191.                                                                                                    | 7.1 | 194       |
| 40 | Zika Virus Promotes Neuronal Cell Death in a Non-Cell Autonomous Manner by Triggering the Release of Neurotoxic Factors. Frontiers in Immunology, 2017, 8, 1016.                                                  | 4.8 | 77        |
| 41 | Consumption of Diet Containing Free Amino Acids Exacerbates Colitis in Mice. Frontiers in<br>Immunology, 2017, 8, 1587.                                                                                           | 4.8 | 11        |
| 42 | Animal Models for the Study of Human Neurodegenerative Diseases. , 2017, , 1109-1129.                                                                                                                             |     | 4         |
| 43 | mGluR5, CB1 and neuroprotection. Oncotarget, 2017, 8, 3768-3769.                                                                                                                                                  | 1.8 | 4         |
| 44 | Alzheimer's disease: Targeting the Cholinergic System. Current Neuropharmacology, 2016, 14, 101-115.                                                                                                              | 2.9 | 988       |
| 45 | Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human Studies. Mediators of<br>Inflammation, 2016, 2016, 1-10.                                                                                  | 3.0 | 75        |
| 46 | The Phoneutria nigriventer spider toxin, PnTx4-5-5, promotes neuronal survival by blocking NMDA receptors. Toxicon, 2016, 112, 16-21.                                                                             | 1.6 | 20        |
| 47 | Dissecting the Signaling Pathways Involved in the Crosstalk between Metabotropic Glutamate 5 and<br>Cannabinoid Type 1 Receptors. Molecular Pharmacology, 2016, 90, 609-619.                                      | 2.3 | 23        |
| 48 | Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic<br>Plasticity. Journal of Biological Chemistry, 2016, 291, 17602-17615.                                       | 3.4 | 23        |
| 49 | Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy and Behavior, 2016, 64, 83-89.                                                                               | 1.7 | 19        |
| 50 | Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Scientific Reports, 2016, 6, 25226.                                         | 3.3 | 41        |
| 51 | Orchestrated activation of mGluR5 and CB1 promotes neuroprotection. Molecular Brain, 2016, 9, 80.                                                                                                                 | 2.6 | 18        |
| 52 | Changes in structure and function of diaphragm neuromuscular junctions from BACHD mouse model for Huntington's disease. Neurochemistry International, 2016, 93, 64-72.                                            | 3.8 | 14        |
| 53 | Ca2+/Calmodulin-dependent protein Kinase II interacts with group I Metabotropic Glutamate and facilitates Receptor Endocytosis and ERK1/2 signaling: role of β-Amyloid. Molecular Brain, 2015, 8, 21.             | 2.6 | 36        |
| 54 | The metabotropic glutamate receptor 5 role on motor behavior involves specific neural substrates.<br>Molecular Brain, 2015, 8, 24.                                                                                | 2.6 | 27        |

FabÃola Mara Ribeiro

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.<br>Toxicology and Applied Pharmacology, 2015, 286, 178-187.                                                                              | 2.8 | 22        |
| 56 | The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Neurobiology of Disease, 2015, 73, 163-173.                                                 | 4.4 | 46        |
| 57 | Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease. Human Molecular Genetics, 2014, 23, 2030-2042.                                                    | 2.9 | 44        |
| 58 | Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert<br>Opinion on Therapeutic Targets, 2014, 18, 1293-1304.                                                                       | 3.4 | 19        |
| 59 | Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α. Neurobiology of Learning and Memory, 2014, 114, 1-9.                                                             | 1.9 | 52        |
| 60 | mGluR5: a potential target for the treatment of Huntington's disease. Future Neurology, 2014, 9, 289-293.                                                                                                                         | 0.5 | 0         |
| 61 | Murine model to study brain, behavior and immunity during hepatic encephalopathy. World Journal of<br>Hepatology, 2014, 6, 243.                                                                                                   | 2.0 | 16        |
| 62 | Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Molecular Brain, 2013, 6, 9.                                                                            | 2.6 | 35        |
| 63 | Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of <scp>H</scp> untington's disease. British Journal of Pharmacology, 2013, 169, 909-921.                                   | 5.4 | 61        |
| 64 | Animal models of neurodegenerative diseases. Revista Brasileira De Psiquiatria, 2013, 35, S82-S91.                                                                                                                                | 1.7 | 45        |
| 65 | Rab8 Modulates Metabotropic Glutamate Receptor Subtype 1 Intracellular Trafficking and Signaling in a Protein Kinase C-Dependent Manner. Journal of Neuroscience, 2012, 32, 16933-16942.                                          | 3.6 | 36        |
| 66 | Kindling alters neurosteroidâ€induced modulation of phasic and tonic GABA <sub>A</sub><br>receptorâ€mediated currents: role of phosphorylation. Journal of Neurochemistry, 2011, 116, 1043-1056.                                  | 3.9 | 29        |
| 67 | Huntington's Disease and Group I Metabotropic Glutamate Receptors. Molecular Neurobiology, 2011,<br>43, 1-11.                                                                                                                     | 4.0 | 47        |
| 68 | Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation.<br>Molecular Brain, 2010, 3, 4.                                                                                             | 2.6 | 40        |
| 69 | Group I Metabotropic Glutamate Receptor Signalling and its Implication in Neurological Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 574-595.                                                                  | 1.4 | 136       |
| 70 | Metabotropic Glutamate Receptor-Mediated Cell Signaling Pathways Are Altered in a Mouse Model of<br>Huntington's Disease. Journal of Neuroscience, 2010, 30, 316-324.                                                             | 3.6 | 83        |
| 71 | Rapid, transient effects of the protein kinase C activator phorbol 12-myristate 13-acetate on activity and trafficking of the rat high-affinity choline transporter. Neuroscience, 2010, 167, 765-773.                            | 2.3 | 21        |
| 72 | Phosphorylation-independent Regulation of Metabotropic Glutamate Receptor 5 Desensitization and<br>Internalization by G Protein-coupled Receptor Kinase 2 in Neurons. Journal of Biological Chemistry,<br>2009, 284, 23444-23453. | 3.4 | 63        |

FabÃola Mara Ribeiro

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Calcineurin Inhibitor Protein (CAIN) Attenuates Group I Metabotropic Glutamate Receptor Endocytosis<br>and Signaling. Journal of Biological Chemistry, 2009, 284, 28986-28994.                                                  | 3.4 | 14        |
| 74 | Neuro-Transmitters in the Central Nervous System & their Implication in Learning and Memory Processes. Current Medicinal Chemistry, 2009, 16, 796-840.                                                                          | 2.4 | 76        |
| 75 | Activity and Subcellular Trafficking of the Sodium-Coupled Choline Transporter CHT Is Regulated Acutely by Peroxynitrite. Molecular Pharmacology, 2008, 73, 801-812.                                                            | 2.3 | 15        |
| 76 | SEC14-like protein 1 interacts with cholinergic transporters. Neurochemistry International, 2007, 50, 356-364.                                                                                                                  | 3.8 | 26        |
| 77 | Analysis of a missense variant of the human N-formyl peptide receptor that is associated with agonist-independent Î <sup>2</sup> -arrestin association and indices of inflammation. Pharmacogenomics Journal, 2007, 7, 190-199. | 2.0 | 12        |
| 78 | Regulated recycling and plasma membrane recruitment of the highâ€affinity choline transporter.<br>European Journal of Neuroscience, 2007, 26, 3437-3448.                                                                        | 2.6 | 30        |
| 79 | The "ins" and "outs" of the high-affinity choline transporter CHT1. Journal of Neurochemistry, 2006, 97, 1-12.                                                                                                                  | 3.9 | 77        |
| 80 | Constitutive high-affinity choline transporter endocytosis is determined by a carboxyl-terminal tail dileucine motif. Journal of Neurochemistry, 2005, 94, 86-96.                                                               | 3.9 | 66        |
| 81 | The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated<br>endocytosis and is present in endosomes and synaptic vesicles. Journal of Neurochemistry, 2003, 87,<br>136-146.         | 3.9 | 67        |
| 82 | Trafficking of green fluorescent protein tagged-vesicular acetylcholine transporter to varicosities in a cholinergic cell line. Journal of Neurochemistry, 2001, 78, 1104-1113.                                                 | 3.9 | 36        |