
Zhu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 697, 37-47.	2.6	147
2	A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics, 2013, 42, 77-84.	1.8	117
3	Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 749, 281-290.	2.6	116
4	Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu–Cr alloy. Journal of Alloys and Compounds, 2014, 582, 786-792.	2.8	110
5	Microstructure and Properties of a Novel Cu–Ni–Co–Si–Mg Alloy with Super-high Strength and Conductivity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 754-763.	2.6	97
6	Microstructure and properties of a Cu–Ni–Si–Co–Cr alloy with high strength and high conductivity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 396-403.	2.6	85
7	Effect of magnesium on microstructure and properties of Cu-Cr alloy. Journal of Alloys and Compounds, 2018, 752, 191-197.	2.8	80
8	Precipitation behavior of Cu-3.0Ni-0.72Si alloy. Acta Materialia, 2019, 166, 261-270.	3.8	78
9	The evolution of microstructure in Cu–8.0Ni–1.8Si–0.15Mg alloy during aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6728-6733.	2.6	72
10	Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity. Journal of Alloys and Compounds, 2017, 723, 1162-1170.	2.8	70
11	Effects of minor rare earths on the microstructure and properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 2020, 847, 155762.	2.8	63
12	Microstructure and properties of high-conductivity, super-high-strength Cu–8.0Ni–1.8Si–0.6Sn–0.15Mg alloy. Journal of Materials Research, 2009, 24, 2123-2129.	1.2	59
13	Effect of thermo-mechanical treatments on corrosion behavior of Cu-15Ni-8Sn alloy in 3.5Âwt% NaCl solution. Materials Chemistry and Physics, 2017, 199, 54-66.	2.0	56
14	Microstructure and properties of Cu-10Âwt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment. Journal of Alloys and Compounds, 2020, 820, 153323.	2.8	56
15	Phase transformations behavior in a Cu–8.0Ni–1.8Si alloy. Journal of Alloys and Compounds, 2011, 509, 3617-3622.	2.8	54
16	Microstructure and tensile properties of large-size 7055 aluminum billets fabricated by spray forming rapid solidification technology. Journal of Alloys and Compounds, 2013, 578, 208-214.	2.8	51
17	Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging. Transactions of Nonferrous Metals Society of China, 2010, 20, 1006-1011.	1.7	50
18	Microstructural evolution, phase transition, and physics properties of a high strength Cu–Ni–Si–Al alloy. Materials Characterization, 2019, 147, 315-323.	1.9	50

ΖΗU ΧΙΑΟ

#	Article	IF	CITATIONS
19	Surface characterization and corrosion behavior of a novel gold-imitation copper alloy with high tarnish resistance in salt spray environment. Corrosion Science, 2013, 76, 42-51.	3.0	49
20	Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite. Carbon, 2018, 137, 188-195.	5.4	49
21	Microstructure evolution and deformation behaviour of Cu-10Âwt%Fe alloy during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140379.	2.6	49
22	Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process. Journal of Alloys and Compounds, 2017, 703, 454-460.	2.8	47
23	High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys. Journal of Alloys and Compounds, 2014, 601, 120-125.	2.8	44
24	Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 266-272.	2.6	42
25	Effects of silicon and thermo-mechanical process on microstructure and properties of Cu–10Ni–3Al–0.8Si alloy. Materials & Design, 2014, 62, 265-270.	5.1	36
26	Heat transfer coefficient of porous copper with homogeneous and hybrid structures in active cooling. Journal of Materials Research, 2013, 28, 2545-2553.	1.2	34
27	Microstructure and properties of high strength, high conductivity and magnetic Cu–10Fe-0.4Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142012.	2.6	34
28	Microstructure and properties of a novel Cu-Cr-Yb alloy with high strength, high electrical conductivity and good softening resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 140001.	2.6	33
29	The evolution of microstructure and properties of a Cu–Ti–Cr–Mg–Si alloy with high strength during the multi-stage thermomechanical treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140510.	2.6	33
30	A percolation network model to predict the electrical property of flexible CNT/PDMS composite films fabricated by spin coating technique. Composites Part B: Engineering, 2019, 174, 107034.	5.9	30
31	Effect of temperature on the electrical property of epoxy composites with carbon nanotube. Composites Science and Technology, 2017, 149, 48-54.	3.8	29
32	Effects of microelements on the microstructure evolution and properties of ultrahigh strength Cu–Ti alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141581.	2.6	29
33	Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys. Journal of Materials Science and Technology, 2022, 112, 11-23.	5.6	29
34	Microstructure and properties of Cu–Mg-Ca alloy processed by equal channel angular pressing. Journal of Alloys and Compounds, 2019, 788, 50-60.	2.8	28
35	Effects of Fe content on microstructure and properties of Cu–Fe alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 3039-3049.	1.7	25
36	High temperature mechanical behavior of alumina dispersion strengthened copper alloy with high content of alumina. Transactions of Nonferrous Metals Society of China, 2015, 25, 444-450.	1.7	22

ΖΗU ΧΙΑΟ

#	Article	IF	CITATIONS
37	Effects of thermal treatments on the residual stress and micro-yield strength of Al2O3 dispersion strengthened copper alloy. Journal of Alloys and Compounds, 2019, 781, 490-495.	2.8	22
38	Microstructure and Properties of a Cu-Ni-Sn Alloy Treated by Two-Stage Thermomechanical Processing. Jom, 2019, 71, 2734-2741.	0.9	21
39	Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy. Materials & Design, 2014, 58, 451-456.	5.1	20
40	Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment. Journal of Materials Research, 2015, 30, 736-744.	1.2	20
41	Effect of trace silicon addition on microstructure and properties of a Cu–0.26Cr–0.14Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142511.	2.6	20
42	Development of homogeneity in a Cu-Mg-Ca alloy processed by equal channel angular pressing. Journal of Alloys and Compounds, 2020, 820, 153112.	2.8	19
43	Tuning the interfacial spin-orbit coupling with ferroelectricity. Nature Communications, 2020, 11, 2627.	5.8	19
44	High temperature response capability in carbon nanotube/polymer nanocomposites. Composites Science and Technology, 2018, 167, 563-570.	3.8	18
45	Corrosion behavior of Cuâ^'Alâ^'Mnâ^'Znâ^'Zr shape memory alloy in NaCl solution. Transactions of Nonferrous Metals Society of China, 2021, 31, 1012-1022.	1.7	18
46	Microstructure and properties of Cu-Ag alloy prepared by continuously directional solidification. Journal of Alloys and Compounds, 2021, 883, 160769.	2.8	18
47	Microstructure evolution of Cu–0.2Mg alloy during continuous extrusion process. Journal of Materials Research, 2015, 30, 2783-2791.	1.2	17
48	Microstructural evolution and properties of Cu–20 wt% Ag alloy wire by multi-pass continuous drawing. Nanotechnology Reviews, 2020, 9, 1359-1367.	2.6	16
49	Microstructure and texture evolution of novel Cu–10Ni–3Al–0.8Si alloy during hot deformation. Journal of Materials Research, 2016, 31, 1113-1123.	1.2	15
50	Microstructure and properties of Cu–Ni–Co–Si–Cr–Mg alloys with different Si contents after multi-step thermo-mechanical treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143532.	2.6	15
51	Microstructure and property of the composite laminate cladded by explosive welding of CuAlMn shape memory alloy and QBe2 alloy. Materials & Design, 2009, 30, 1404-1408.	5.1	14
52	Dry wear behavior of ultra-high strength Cu–10Ni–3Al–0.8Si alloy. Tribology International, 2015, 92, 544-552.	3.0	14
53	Adiabatic shear deformation behaviors of cold-rolled copper under different impact loading directions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 330-338.	2.6	14
54	A multiphase strengthened Cu-Nb-Si alloy with high strength and high conductivity. Materials Characterization, 2021, 182, 111565.	1.9	14

ΖΗυ ΧΙΑΟ

#	Article	IF	CITATIONS
55	Cr-based second phases in a high conductivity Cu-Cr-Nb alloy with high high-temperature strength. Materials and Design, 2022, 219, 110784.	3.3	14
56	Effects of grain size on the microstructure and texture of cold-rolled Ta-2.5W alloy. International Journal of Refractory Metals and Hard Materials, 2016, 58, 125-136.	1.7	13
57	Microstructure evolution and hot deformation behavior of Cuâ^'3Tiâ^'0.1Zr alloy with ultra-high strength. Transactions of Nonferrous Metals Society of China, 2020, 30, 2737-2748.	1.7	13
58	CharacterizationÂofÂDispersionÂStrengthenedÂCopperÂAlloyÂPreparedÂbyÂInternalÂOxidation Combined with Mechanical Alloying. Journal of Materials Engineering and Performance, 2017, 26, 5641-5647.	1.2	12
59	Effect of Aging Time on the Corrosion Behavior of a Cu-Ni-Si Alloy in 3.5 wt% NaCl Solution. Corrosion, 2016, 72, 615-627.	0.5	11
60	Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy. Materials, 2017, 10, 1100.	1.3	11
61	Hot deformation behavior of a CuAlMn shape memory alloy. Journal of Alloys and Compounds, 2020, 845, 156161.	2.8	11
62	Mechanical property and corrosion behavior of aged Cu-20Ni-20Mn alloy with ultra-high strength. Journal of Central South University, 2020, 27, 1158-1167.	1.2	11
63	Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of a Cu-Mg Alloy. Crystals, 2020, 10, 426.	1.0	11
64	Structure evolution of Cu-based shape memory powder during mechanical alloying. Transactions of Nonferrous Metals Society of China, 2007, 17, 1422-1427.	1.7	10
65	Surface modification with SiO2 coating on biomedical TiNi shape memory alloy by sol–gel method. Transactions of Nonferrous Metals Society of China, 2015, 25, 3723-3728.	1.7	10
66	Recrystallization behavior and phase transformation in a hot-rolled pure cobalt during annealing at the elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143178.	2.6	10
67	Electrical characterization of flexible CNT/polydimethylsiloxane composite films with finite thickness. Carbon, 2019, 154, 439-447.	5.4	9
68	Quench Sensitivity of AA7N01 Alloy Used for High-Speed Train Body Structure. Jom, 2019, 71, 1681-1686.	0.9	9
69	Microstructure and properties of Cu-TiNi composites prepared by vacuum hot pressing. Journal of Alloys and Compounds, 2022, 897, 162729.	2.8	9
70	A Novel Cu-10Zn-1.5Ni-0.34Si Alloy with Excellent Mechanical Property Through Precipitation Hardening. Journal of Materials Engineering and Performance, 2016, 25, 4624-4630.	1.2	8
71	Investigations on Voids Formation in Cu–Mg Alloy During Continuous Extrusion. Jom, 2017, 69, 1696-1700.	0.9	8
72	Hot Deformation Behavior of a Spray-Deposited Al-8.31Zn-2.07Mg-2.46Cu-0.12Zr Alloy. Metals, 2017, 7, 299.	1.0	8

ΖΗυ ΧΙΑΟ

#	Article	IF	CITATIONS
73	Effect of accumulative roll-bonding process on phase transformation and magnetic properties of polycrystalline cobalt. Materials Characterization, 2020, 163, 110290.	1.9	7
74	Effect of creep annealing on the dimensional stability of dispersion strengthened copper alloy. Journal of Alloys and Compounds, 2021, 887, 161321.	2.8	6
75	Sphericizing tungsten particles by means of localized preferential oxidation and alkaline washing. Powder Technology, 2012, 228, 187-192.	2.1	5
76	Interface Microstructure and Tribological Behaviors of Copper Matrix Composites with High Graphite Content Prepared by Short-Process Reduction and Vacuum Hot Pressing. Jom, 2022, 74, 2094-2105.	0.9	5
77	Atom exchange of martensite in Cu-13Zn-15Al alloy during non-isothermal aging. Transactions of Nonferrous Metals Society of China, 2006, 16, 1064-1068.	1.7	4
78	Fabrication of a Cu/TiNi Composite with High Air-Tightness and Low Thermal Expansion. Jom, 2020, 72, 883-888.	0.9	4
79	Microstructure, and Physical and Mechanical Properties of Copper–Graphite Composites Obtained by In Situ Reaction Method. Journal of Materials Engineering and Performance, 2020, 29, 1696-1705.	1.2	3
80	Effect of Al on Corrosion Behavior of Imitation-Gold Cu-Zn-Ni-Sn Alloys in 3.5 wt.% NaCl solution. Jom, 2021, 73, 589-599.	0.9	3
81	Effect of equal channel angular pressing on microstructure evolution and properties variations of a CuCrZrY alloy. Journal of Alloys and Compounds, 2022, 894, 162284.	2.8	3
82	Uncovering Microstructure Evolution and Dynamic Softening Mechanism of Spray-Deposited AlZnMgCu Alloy Under Thermal Deformation. Metals and Materials International, 2022, 28, 2103-2117.	1.8	3
83	Microstructure evolution of alumina dispersion strengthened copper alloy deformed under different conditions. Transactions of Nonferrous Metals Society of China, 2015, 25, 3953-3958.	1.7	2
84	Microstructure Evolution and Hot Deformation Behavior of a CuNiSn Alloy. Processes, 2021, 9, 451.	1.3	2
85	Dynamic Recrystallization of Cu-Cr-Ni-Si-Co Alloy During Hot Deformation. Jom, 2021, 73, 2274-2284.	0.9	2
86	Porous CuAlMn Shape-Memory Alloys with Controlling Porosity and Pores' Structural Parameter Produced by Sintering-Evaporation Process. Advanced Materials Research, 2010, 123-125, 1011-1014.	0.3	1
87	Cu/SiCP Composites Prepared by In-Situ Carbonization Synthesis. Jom, 2019, 71, 2513-2521.	0.9	1
88	Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique. Frontiers of Materials Science in China, 2008, 2, 369-374.	0.5	0
89	Effects of thermal-mechanical treatment on microstructure and properties of Cu-Zn-Fe alloy. IOP Conference Series: Earth and Environmental Science, 2018, 199, 032011.	0.2	0