
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteriaÂand resistance genes – A review. Water Research, 2017, 123, 448-467.	5.3	400
2	Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 2010, 10, 1039-1070.	1.5	345
3	Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 2009, 16, 162-175.	2.7	320
4	Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Frontiers in Plant Science, 2018, 9, 1836.	1.7	291
5	Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environmental Science and Pollution Research, 2009, 16, 876-900.	2.7	229
6	Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties. Scientific Reports, 2019, 9, 15178.	1.6	166
7	Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environmental and Experimental Botany, 2009, 67, 10-22.	2.0	153
8	Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science, 2014, 5, 131.	1.7	153
9	Metabolism of Ibuprofen by <i>Phragmites australis</i> : Uptake and Phytodegradation. Environmental Science & amp; Technology, 2017, 51, 4576-4584.	4.6	149
10	Role of Plants in Regulating the Methane Flux to the Atmosphere. , 1991, , 29-63.		147
11	Status of hormones and painkillers in wastewater effluents across several European states—considerations for the EU watch list concerning estradiols and diclofenac. Environmental Science and Pollution Research, 2016, 23, 12835-12866.	2.7	141
12	Degradation of glutathione S -conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters, 1996, 384, 31-34.	1.3	136
13	Uptake and metabolism of diclofenac in Typha latifolia – How plants cope with human pharmaceutical pollution. Plant Science, 2014, 227, 12-20.	1.7	132
14	Metabolism of diclofenac in plants – Hydroxylation is followed by glucose conjugation. Journal of Hazardous Materials, 2012, 243, 250-256.	6.5	130
15	Proteomic and enzymatic response of poplar to cadmium stress. Journal of Proteomics, 2009, 72, 379-396.	1.2	121
16	Using phytoremediation technologies to upgrade waste water treatment in Europe. Environmental Science and Pollution Research, 2007, 14, 490-497.	2.7	119
17	Conjugating Enzymes Involved in Xenobiotic Metabolism of Organic Xenobiotics in Plants. International Journal of Phytoremediation, 2002, 4, 247-265.	1.7	116
18	Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research, 2002, 9, 4-17.	2.7	111

#	Article	IF	CITATIONS
19	Metabolism of acetaminophen (paracetamol) in plants—two independent pathways result in the formation of a glutathione and a glucose conjugate. Environmental Science and Pollution Research, 2009, 16, 206-13.	2.7	111
20	Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum) Tj ETQq 1447-1457.	0 0 0 rgBT /0 1.9	Overlock 10 Tf 98
21	Phytoremediation of organic xenobiotics – Glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresource Technology, 2008, 99, 7183-7191.	4.8	93
22	Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environmental Science and Pollution Research, 2010, 17, 1553-1562.	2.7	93
23	Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of the Total Environment, 2018, 616-617, 1101-1123.	3.9	93
24	Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry, 2000, 54, 267-273.	1.4	87
25	Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. Journal of Hazardous Materials, 2018, 342, 85-95.	6.5	81
26	Localization of Thermo-Osmotically Active Partitions in Young Leaves ofNuphar lutea. Journal of Experimental Botany, 1986, 37, 1450-1461.	2.4	73
27	Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Environmental Science and Pollution Research, 2002, 9, 73-85.	2.7	73
28	Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. Journal of Chromatography A, 2006, 1134, 186-193.	1.8	72
29	Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome. Frontiers in Plant Science, 2017, 8, 1005.	1.7	70
30	Bioenergy to save the world. Environmental Science and Pollution Research, 2008, 15, 196-204.	2.7	64
31	Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. Frontiers in Plant Science, 2018, 9, 900.	1.7	64
32	How Plants Cope with Foreign Compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare) (9 pp). Environmental Science and Pollution Research, 2007, 14, 114-122.	2.7	63
33	Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere, 2004, 57, 1007-1015.	4.2	60
34	Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environmental and Experimental Botany, 2012, 76, 39-48.	2.0	57
35	The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L Frontiers in Plant Science, 2017, 8, 930.	1.7	57
36	Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. Science of the Total Environment, 2019, 651, 3202-3221.	3.9	57

#	Article	IF	CITATIONS
37	Emerging pollutants and plants – Metabolic activation of diclofenac by peroxidases. Chemosphere, 2016, 146, 435-441.	4.2	56
38	Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Science of the Total Environment, 2020, 711, 134433.	3.9	56
39	Organic Amendments in a Long-term Field Trial—Consequences for the Bulk Soil Bacterial Community as Revealed by Network Analysis. Microbial Ecology, 2018, 76, 226-239.	1.4	51
40	Ex-SituProcess for Treating PAH-Contaminated Soil withPhanerochaete chrysosporium. Environmental Science & Technology, 1997, 31, 2626-2633.	4.6	50
41	The fate of arsenic, cadmium and lead in Typha latifolia: A case study on the applicability of micro-PIXE in plant ionomics. Journal of Hazardous Materials, 2013, 248-249, 371-378.	6.5	50
42	Land use and sustainability: FAM Research Network on Agroecosystems. Geoderma, 2002, 105, 155-166.	2.3	49
43	Identification of Plant Metabolites of Environmental Contaminants by UPLC-QToF-MS: The in Vitro Metabolism of Triclosan in Horseradish. Journal of Agricultural and Food Chemistry, 2014, 62, 1001-1009.	2.4	49
44	Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia. Journal of Hazardous Materials, 2016, 308, 355-361.	6.5	49
45	Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?. Environmental Science and Pollution Research, 2009, 16, 795-804.	2.7	48
46	Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: Uptake, biotransformation and phytotoxicity. Chemosphere, 2017, 182, 638-646.	4.2	48
47	Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science, 2015, 6, 83.	1.7	47
48	Prospects for the phytoremediation of organic pollutants in Europe. Environmental Science and Pollution Research, 2002, 9, 1-3.	2.7	45
49	Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. Journal of Soils and Sediments, 2010, 10, 54-64.	1.5	44
50	<i><scp>N</scp></i> â€acylâ€homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytologist, 2014, 201, 545-555.	3.5	44
51	Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum sativum L). Plant and Soil, 2016, 400, 107-122.	1.8	44
52	Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environmental Science and Pollution Research, 2003, 10, 225-234.	2.7	43
53	Plants for waste water treatment – Effects of heavy metals on the detoxification system of Typha latifolia. Bioresource Technology, 2011, 102, 996-1004.	4.8	43
54	The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environmental Science and Pollution Research, 2009, 16, 127-143.	2.7	42

#	Article	IF	CITATIONS
55	Exploiting plant metabolism for the phytoremediation of persistent herbicides. Environmental Science and Pollution Research, 2002, 9, 18-28.	2.7	41
56	Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. Journal of Soils and Sediments, 2004, 4, 133-140.	1.5	41
57	Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Frontiers in Plant Science, 2015, 6, 205.	1.7	41
58	Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent. Journal of Hazardous Materials, 2016, 306, 230-236.	6.5	40
59	Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics, 2012, 4, 333.	1.0	37
60	Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia. Chemosphere, 2015, 134, 307-312.	4.2	37
61	Diphenyl ether herbicide metabolism in a spruce cell suspension culture: The identification of two novel metabolites derived from a glutathione conjugate. Pesticide Biochemistry and Physiology, 1991, 39, 291-301.	1.6	36
62	Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida. Environmental Science and Pollution Research, 2008, 15, 143-149.	2.7	36
63	Poplar and diclofenac pollution: A focus on physiology, oxidative stress and uptake in plant organs. Science of the Total Environment, 2018, 636, 944-952.	3.9	36
64	Accumulation and fate of C1/C2-chlorocarbons and trichloroacetic acid in spruce needles from an Austrian mountain site. Chemosphere, 1994, 29, 2467-2476.	4.2	35
65	Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environmental Science and Pollution Research, 2009, 16, 573-581.	2.7	34
66	Root exudation pattern of Typha latifolia L. plants after copper exposure. Plant and Soil, 2013, 370, 187-195.	1.8	33
67	Exposure to chlorinated acetic acids: Responses of peroxidase and glutathione S-transferase activity in pine needles. Environmental Science and Pollution Research, 1997, 4, 163-171.	2.7	32
68	Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. Plant Science, 2016, 253, 130-140.	1.7	32
69	Detoxification of Herbicides in Phragmites australis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 317-324.	0.6	31
70	Trichloroacetic acid in Norway spruce/soil-system I. Biodegradation in soil. Chemosphere, 2003, 50, 303-309.	4.2	28
71	The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Environmental Science and Pollution Research, 2015, 22, 18495-18507.	2.7	28
72	Glutathione S-transferase activity in spruce needles. Pesticide Biochemistry and Physiology, 1990, 37, 211-218.	1.6	27

5

#	Article	IF	CITATIONS
73	Response of phase II detoxification enzymes in Phragmites australis plants exposed to organochlorines. Environmental Science and Pollution Research, 2013, 20, 3464-3471.	2.7	27
74	HCH phytoremediation potential of native plant species from a contaminated urban site in Turda, Romania. Journal of Environmental Management, 2018, 223, 286-296.	3.8	27
75	Enrichment of endophytic Actinobacteria in roots and rhizomes of Miscanthus × giganteus plants exposed to diclofenac and sulfamethoxazole. Environmental Science and Pollution Research, 2020, 27, 11892-11904.	2.7	27
76	Chloroacetic acids—Degradation intermediates of organic matter in forest soil. Soil Biology and Biochemistry, 2007, 39, 382-385.	4.2	25
77	Characterization of Cytosolic Glutathione Sâ€Transferase in Spruce Needles. Botanica Acta, 1993, 106, 301-306.	1.6	24
78	Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management – A European perspective. Science of the Total Environment, 2019, 678, 146-161.	3.9	24
79	Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiomes, 2019, 14, 8.	2.2	22
80	Metabolism of a Diphenylether Herbicide to a Volatile Thioanisole and a Polar Sulfonic Acid Metabolite in Spruce (Picea). Pesticide Biochemistry and Physiology, 1993, 47, 8-20.	1.6	21
81	Direct Effect of CD on Glutathione S-Transferase and Glutathione Reductase fromCalystegia Sepium. International Journal of Phytoremediation, 2007, 9, 465-473.	1.7	21
82	lopromide exposure in Typha latifolia L.: Evaluation of uptake, translocation and different transformation mechanisms in planta. Water Research, 2017, 122, 290-298.	5.3	21
83	Chloroacetic acids in environmental processes. Environmental Chemistry Letters, 2003, 1, 127-130.	8.3	20
84	Development of microbial communities in organochlorine pesticide contaminated soil: A post-reclamation perspective. Applied Soil Ecology, 2020, 150, 103467.	2.1	20
85	Glutathion S-transferases in trees: Inducibility by various organic xenobiotics. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 71-73.	0.4	19
86	Molecular and Cellular Aspects of Contaminant Toxicity in Plants. Advances in Botanical Research, 2017, , 223-276.	0.5	19
87	The Role of Glutathione and Glutathione S-transferases in Plant Reaction and Adaptation to Xenobiotics. Plant Ecophysiology, 2001, , 155-183.	1.5	18
88	Uptake, translocation and fate of trichloroacetic acid in a Norway spruce/soil system. Chemosphere, 2003, 52, 437-442.	4.2	18
89	Exploiting Plant Metabolism for the Phytoremediation of Organic Xenobiotics. Methods in Biotechnology, 2007, , 251-263.	0.2	18
90	Enzymes of the glutathione–ascorbate cycle in leaves and roots of rhizobia-inoculated faba bean plants (Vicia faba L.) under salinity stress. European Journal of Soil Biology, 2014, 60, 98-103.	1.4	17

#	Article	IF	CITATIONS
91	Changes of soil-rhizosphere microbiota after organic amendment application in a Hordeum vulgare L. short-term greenhouse experiment. Plant and Soil, 2020, 455, 489-506.	1.8	17
92	Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36. Chemosphere, 2006, 63, 1924-1932.	4.2	16
93	Post-reclamation microbial diversity and functions in hexachlorocyclohexane (HCH) contaminated soil in relation to spontaneous HCH tolerant vegetation. Science of the Total Environment, 2021, 767, 144653.	3.9	16
94	Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. Science of the Total Environment, 2022, 831, 154674.	3.9	15
95	Characterization of glutathione S-transferases in needles of Norway spruce trees from a forest decline stand. Tree Physiology, 1996, 16, 503-508.	1.4	14
96	Progress in Understanding the Sources, Deposition and Above-ground Fate of Trichloroacetic Acid (11) Tj ETQo	0 0 0 rgBT	/Overlock 10
97	The Role of Glucosyl and Malonyl Conjugation in Herbicide Selectivity. , 1997, , 211-231.		14
98	Under temperate climate, the conversion of grassland to arable land affects soil nutrient stocks and bacteria in a short term. Science of the Total Environment, 2020, 703, 135494.	3.9	13
99	52Âyears of ecological restoration following a major disturbance by opencast lignite mining does not reassemble microbiome structures of the original arable soils. Science of the Total Environment, 2020, 745, 140955.	3.9	13
100	Cell Walls Are Remodeled to Alleviate nY ₂ O ₃ Cytotoxicity by Elaborate Regulation of <i>de Novo</i> Synthesis and Vesicular Transport. ACS Nano, 2021, 15, 13166-13177.	7.3	13
101	Fate of Glutathione S-Conjugates in Plants. , 1997, , 233-244.		13
102	Trichloroacetic acid in Norway spruce/soil-system. II. Distribution and degradation in the plant. Chemosphere, 2004, 56, 327-333.	4.2	12
103	Effect of the pharmaceuticals diclofenac and lamotrigine on stress responses and stress gene expression in lettuce (Lactuca sativa) at environmentally relevant concentrations. Journal of Hazardous Materials, 2021, 403, 123881.	6.5	12
104	Responses of Petunia hybrida and Phaseolus vulgaris to fumigation with difluoro-chloro-bromo-methane (Halon 1211). Chemosphere, 1990, 21, 1499-1505.	4.2	11
105	Long-Term Exposure of Sitka Spruce Seedlings to Trichloroacetic Acid. Environmental Science & Technology, 2003, 37, 2953-2957.	4.6	11
106	Establishment of a constructed wetland in extreme dryland. Environmental Science and Pollution Research, 2009, 16, 862-875.	2.7	11
107	Enzymatic basis for fungicide removal by Elodea canadensis. Environmental Science and Pollution Research, 2011, 18, 1015-1021.	2.7	11
108	Selenium species in the roots and shoots of chickpea plants treated with different concentrations of sodium selenite. Environmental Science and Pollution Research, 2015, 22, 16978-16986.	2.7	11

#	Article	IF	CITATIONS
109	Editorial: Plant Glutathione Transferases: Diverse, Multi-Tasking Enzymes With Yet-to-Be Discovered Functions. Frontiers in Plant Science, 2019, 10, 1304.	1.7	11
110	Response of Barley Plants to Drought Might Be Associated with the Recruiting of Soil-Borne Endophytes. Microorganisms, 2020, 8, 1414.	1.6	11
111	Oxidative biodegradation of tetrachloroethene in needles of Norway spruce (Picea abies L.). South African Journal of Botany, 2007, 73, 89-96.	1.2	10
112	Organic Xenobiotics and Plants. Plant Ecophysiology, 2011, , .	1.5	10
113	Untargeted Metabolomics Studies on Drug-Incubated Phragmites australis Profiles. Metabolites, 2021, 11, 2.	1.3	10
114	Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of tolerance by stress-related response. Environmental Science and Pollution Research, 2018, 25, 16080-16090.	2.7	9
115	The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. Chemosphere, 2022, 287, 132078.	4.2	9
116	New cost action launched: Phytotechnologies to promote sustainable land use and improve food safety. Journal of Soils and Sediments, 2004, 4, 205-205.	1.5	8
117	Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure. Environmental Pollution, 2004, 130, 165-176.	3.7	8
118	A chlorineâ€36 and carbonâ€14 study of the role of chlorine in the forest ecosystem. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 437-439.	0.5	8
119	Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the alpine area. Environmental Science and Pollution Research, 2014, 21, 252-267.	2.7	8
120	Comparative study on the impact of copper sulphate and copper nitrate on the detoxification mechanisms in Typha latifolia. Environmental Science and Pollution Research, 2015, 22, 657-666.	2.7	8
121	Sexual Dimorphism in the Response of Mercurialis annua to Stress. Metabolites, 2016, 6, 13.	1.3	8
122	Microsomal Detoxification Enzymes in Yam Bean [Pachyrhizus erosus (L.) Urban]. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 693-700.	0.6	7
123	Enzymes Transferring Biomolecules to Organic Foreign Compounds: A Role for Glucosyltransferase and Glutathione S-transferase in Phytoremediation. , 2006, , 133-142.		7
124	Phytotechnologies to promote sustainable land use and improve food safety: outcomes and outlook from the European COST Action 859. Environmental Science and Pollution Research, 2009, 16, 743-744.	2.7	7
125	Definition of Core Bacterial Taxa in Different Root Compartments of Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity. Diversity, 2020, 12, 392.	0.7	7
126	Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis. Handbook of Environmental Chemistry, 2020, , 103-140.	0.2	7

#	Article	IF	CITATIONS
127	Visualization of Glutathione Conjugation and Inducibility of Glutathione S-Transferases in Onion 1999, 54, 1033-1041.	0.6	6
128	Uptake and Effect of Heavy Metals on the Plant Detoxification Cascade in the Presence and Absence of Organic Pollutants. Soil Biology, 2010, , 65-85.	0.6	6
129	Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. Science of the Total Environment, 2022, 803, 149844.	3.9	6
130	Effects of halone 1301 on Lepidium sativum, Petunia hybrida and Phaseolus vulgaris. Chemosphere, 2000, 41, 1603-1610.	4.2	5
131	New developments in rhizosphere research. Journal of Soils and Sediments, 2003, 3, 227-227.	1.5	5
132	Lemna minor studies under various storage periods using extended-polarity extraction and metabolite non-target screening analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113362.	1.4	5
133	Untargeted Analysis of Lemna minor Metabolites: Workflow and Prioritization Strategy Comparing Highly Confident Features between Different Mass Spectrometers. Metabolites, 2021, 11, 832.	1.3	5
134	Microbiological aspects of determination of trichloroacetic acid in soil. Folia Microbiologica, 2004, 49, 117-122.	1.1	4
135	Reaction of spruce cells toward heavy metals and the influence of culture conditions. Environmental Science and Pollution Research, 2004, 11, 388-393.	2.7	4
136	Impact of high carbon amendments and pre-crops on soil bacterial communities. Biology and Fertility of Soils, 2021, 57, 305-317.	2.3	4
137	Making modern agriculture sustainable: Fam research network on agroecosystems. Journal of Soils and Sediments, 2003, 3, 223-226.	1.5	3
138	Trichloroacetic acid of different origin in Norway spruce needles and chloroplasts. Biologia Plantarum, 2008, 52, 177-180.	1.9	3
139	Removal of tramadol from water using Typha angustifolia and Hordeum vulgare as biological models: Possible interaction with other pollutants in short-term uptake experiments. Science of the Total Environment, 2022, 809, 151164.	3.9	3
140	Phytoremediation. Journal of Soils and Sediments, 2003, 3, 228-228.	1.5	2
141	Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environmental Science and Pollution Research, 2004, 11, 393-393.	2.7	2
142	Mesofauna. , 2008, , 293-306.		1
143	Editorial: Options for Transition of Land Towards Intensive and Sustainable Agricultural Systems. Frontiers in Plant Science, 2019, 10, 346.	1.7	1

#	Article	IF	CITATIONS
145	Uptake and transformation of oxybenzone in the presence of TiO2: impact of nanoparticles on the plant remediation of an organic UV filter. , 0, 127, 111-120.		1
146	Haloorganics in Temperate Forest Ecosystems: Sources, Transport and Degradation. Plant Ecophysiology, 2011, , 17-45.	1.5	0
147	Trichloroacetic Acid in the Forest Ecosystem. Plant Ecophysiology, 2011, , 87-103.	1.5	Ο
148	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	2.2	0
149	Impact of repeated irrigation of lettuce cultures with municipal wastewater on the diversity and composition of root-associated arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 0, , 1.	2.3	0