Pavlo Gilchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9775424/publications.pdf

Version: 2024-02-01

38 papers

6,021 citations

257450 24 h-index 38 g-index

43 all docs 43 docs citations

times ranked

43

10112 citing authors

#	Article	IF	CITATIONS
1	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
2	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	11.0	937
3	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	30.7	838
4	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	30.7	450
5	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	28.9	321
6	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	28.9	297
7	High frequency of shared clonotypes in human B cell receptor repertoires. Nature, 2019, 566, 398-402.	27.8	262
8	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	13.3	237
9	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	27.8	222
10	A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell, 2019, 177, 1136-1152.e18.	28.9	177
11	Cross-Neutralizing and Protective Human Antibody Specificities to Poxvirus Infections. Cell, 2016, 167, 684-694.e9.	28.9	141
12	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	6.4	109
13	Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 ⁺ Lung-Resident Memory T Cells. ACS Nano, 2019, 13, 10939-10960.	14.6	89
14	A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nature Microbiology, 2017, 2, 16271.	13.3	82
15	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	14.3	79
16	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	14.3	71
17	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	13.3	68
18	A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nature Communications, 2018, 9, 2669.	12.8	67

#	Article	IF	Citations
19	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	6.4	67
20	Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Reports, 2018, 24, 1802-1815.e5.	6.4	64
21	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	14.3	61
22	Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host and Microbe, 2019, 26, 715-728.e8.	11.0	49
23	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	22.5	46
24	Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host and Microbe, 2020, 27, 976-991.e11.	11.0	43
25	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	12.8	24
26	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	6.4	22
27	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	28.9	21
28	Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathogens, 2018, 14, e1007204.	4.7	16
29	Pan-Filovirus Serum Neutralizing Antibodies in a Subset of Congolese Ebolavirus Infection Survivors. Journal of Infectious Diseases, 2018, 218, 1929-1936.	4.0	16
30	Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S565-S573.	4.0	13
31	Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine. Journal of Virology, 2019, 93, .	3.4	13
32	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	4.4	11
33	Discovery of Marburg virus neutralizing antibodies from virus-na \tilde{A} -ve human antibody repertoires using large-scale structural predictions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31142-31148.	7.1	10
34	Real-time cell analysis: A high-throughput approach for testing SARS-CoV-2 antibody neutralization and escape. STAR Protocols, 2022, 3, 101387.	1.2	8
35	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	4.1	6
36	Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathogens, 2022, 18, e1010518.	4.7	5

#	Article	IF	CITATIONS
37	Proteo-Genomic Analysis Identifies Two Major Sites of Vulnerability on Ebolavirus Glycoprotein for Neutralizing Antibodies in Convalescent Human Plasma. Frontiers in Immunology, 2021, 12, 706757.	4.8	4
38	Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Frontiers in Immunology, 2021, 12, 808047.	4.8	4