Sada Venkateswarlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977540/publications.pdf

Version: 2024-02-01

		687363	996975
15	799	13	15
papers	citations	h-index	g-index
15	15	15	1266
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Core–Shell Ferromagnetic Nanorod Based on Amine Polymer Composite (Fe ₃ O ₄ @DAPF) for Fast Removal of Pb(II) from Aqueous Solutions. ACS Applied Materials & Interfaces, 2015, 7, 25362-25372.	8.0	144
2	Bioinspired 2D-Carbon Flakes and Fe ₃ O ₄ Nanoparticles Composite for Arsenite Removal. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23876-23885.	8.0	138
3	Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sensors and Actuators B: Chemical, 2018, 258, 172-183.	7.8	90
4	Surfactant-free green synthesis of Fe ₃ O ₄ nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(<scp>ii</scp>) ions from water. Dalton Transactions, 2015, 44, 18427-18437.	3.3	79
5	Highly Sensitive Electrochemical Sensor for Anticancer Drug by a Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite. ACS Omega, 2018, 3, 14597-14605.	3.5	68
6	Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Advances, 2017, 7, 10592-10600.	3.6	48
7	Reversible Fluorescence Switching of Metal–Organic Framework Nanoparticles for Use as Security Ink and Detection of Pb ²⁺ Ions in Aqueous Media. ACS Applied Nano Materials, 2020, 3, 3684-3692.	5. O	45
8	Biopolymer-Coated Magnetite Nanoparticles and Metal–Organic Framework Ternary Composites for Cooperative Pb(II) Adsorption. ACS Applied Nano Materials, 2018, 1, 4198-4210.	5.0	36
9	Fe3O4 nano assembly embedded in 2D-crumpled porous carbon sheets for high energy density supercapacitor. Chemical Engineering Journal, 2021, 420, 127584.	12.7	34
10	Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+. Microporous and Mesoporous Materials, 2020, 306, 110399.	4.4	31
11	An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg(II) from an aqueous medium. Chemosphere, 2022, 286, 131673.	8.2	27
12	Chemical-free sustainable carbon nano-onion as a dual-mode sensor platform for noxious volatile organic compounds. Applied Surface Science, 2021, 537, 147872.	6.1	20
13	Well-Designed Au Nanorod-Doped Cu ₂ O Core–Shell Nanocube-Embedded Reduced Graphene Oxide Composite for Efficient Removal of a Water Pollutant Dye. ACS Omega, 2020, 5, 24799-24810.	3.5	15
14	Biosynthesized Highly Stable Au/C Nanodots: Ideal Probes for the Selective and Sensitive Detection of Hg2+ Ions. Nanomaterials, 2019, 9, 245.	4.1	12
15	Phase Controlled Synthesis of Pt Doped Co Nanoparticle Composites Using a Metal-Organic Framework for Fischer–Tropsch Catalysis. Catalysts, 2019, 9, 156.	3.5	12