Karen L Mckee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977526/publications.pdf

Version: 2024-02-01

97 papers 11,053 citations

52 h-index 90 g-index

107 all docs

107 docs citations

107 times ranked

5962 citing authors

#	Article	IF	Citations
1	Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 2008, 89, 105-127.	1.6	576
2	Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 2007, 16, 545-556.	5.8	561
3	Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography, 2014, 23, 726-743.	5.8	555
4	How mangrove forests adjust to rising sea level. New Phytologist, 2014, 202, 19-34.	7.3	489
5	Oxygen Deficiency in Spartina alterniflora Roots: Metabolic Adaptation to Anoxia. Science, 1981, 214, 439-441.	12.6	407
6	Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology, 2003, 91, 1093-1105.	4.0	380
7	Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science, 2010, 2, 395-417.	11.6	328
8	Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 2016, 8, 243-266.	11.6	310
9	Soil Physicochemical Patterns and Mangrove Species Distribution-Reciprocal Effects?. Journal of Ecology, 1993, 81, 477.	4.0	297
10	Mechanism for the hydrogen sulfideâ€induced growth limitation in wetland macrophytes. Limnology and Oceanography, 1990, 35, 399-408.	3.1	280
11	Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry, 2003, 62, 145-175.	3.5	270
12	Elevated CO ₂ stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6182-6186.	7.1	251
13	REEXAMINATION OF PORE WATER SULFIDE CONCENTRATIONS AND REDOX POTENTIALS NEAR THE AERIAL ROOTS OF RHIZOPHORA MANGLE AND AVICENNIA GERMINANS. American Journal of Botany, 1988, 75, 1352-1359.	1.7	244
14	Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology, 2001, 89, 818-828.	4.0	242
15	Spartina Alterniflora Die-Back in Louisiana: Time-Course Investigation of Soil Waterlogging Effects. Journal of Ecology, 1988, 76, 509.	4.0	227
16	Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 2011, 91, 475-483.	2.1	215
17	The Relationship of Smooth Cordgrass (Spartina alterniflora) to Tidal Datums: A Review. Estuaries and Coasts, 1988, 11, 143.	1.7	213
18	Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 2003, 134, 405-414.	2.0	210

#	Article	IF	CITATIONS
19	Restoration of Biogeochemical Function in Mangrove Forests. Restoration Ecology, 2000, 8, 247-259.	2.9	201
20	Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon?. Global Ecology and Biogeography, 2004, 13, 65-73.	5.8	200
21	Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia, 1995, 101, 448-460.	2.0	195
22	MANGROVE ISOTOPIC ($\hat{1}$ 15N AND $\hat{1}$ 13C) FRACTIONATION ACROSS A NITROGEN VS. PHOSPHORUS LIMITATION GRADIENT. Ecology, 2002, 83, 1065-1075.	3.2	192
23	The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Functional Ecology, 2004, 18, 25-33.	3.6	181
24	Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls., 2006,, 271-292.		168
25	EFFECTS OF NUTRIENT ENRICHMENT ON WITHIN-STAND CYCLING IN A MANGROVE FOREST. Ecology, 1999, 80, 2193-2205.	3.2	166
26	Response of a freshwater marsh plant community to increased salinity and increased water level. Aquatic Botany, 1989, 34, 301-316.	1.6	165
27	Where temperate meets tropical: multiâ€factorial effects of elevated CO ₂ , nitrogen enrichment, and competition on a mangroveâ€salt marsh community. Global Change Biology, 2008, 14, 971-984.	9.5	140
28	Reexamination of Pore Water Sulfide Concentrations and Redox Potentials Near the Aerial Roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany, 1988, 75, 1352.	1.7	136
29	Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany, 2001, 46, 277-297.	4.2	134
30	Elevated CO ₂ enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with seaâ€level rise. Journal of Ecology, 2009, 97, 67-77.	4.0	118
31	Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquatic Botany, 2001, 70, 117-133.	1.6	112
32	MANGROVE RECRUITMENT AFTER FOREST DISTURBANCE IS FACILITATED BY HERBACEOUS SPECIES IN THE CARIBBEAN. Ecological Applications, 2007, 17, 1678-1693.	3.8	107
33	Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta. Wetlands, 2009, 29, 2-15.	1.5	107
34	Nutrient Addition Differentially Affects Ecological Processes of Avicennia germinans in Nitrogen versus Phosphorus Limited Mangrove Ecosystems. Ecosystems, 2007, 10, 347-359.	3.4	106
35	INTERSPECIFIC VARIATION IN GROWTH, BIOMASS PARTITIONING, AND DEFENSIVE CHARACTERISTICS OF NEOTROPICAL MANGROVE SEEDLINGS: RESPONSE TO LIGHT AND NUTRIENT AVAILABILITY. American Journal of Botany, 1995, 82, 299-307.	1.7	105
36	Ecophysiology of Wetland Plant Roots: A Modelling Comparison of Aeration in Relation to Species Distribution. Annals of Botany, 2000, 86, 675-685.	2.9	100

#	Article	IF	CITATIONS
37	Mangrove Species Distribution and Propagule Predation in Belize: An Exception to the Dominance-Predation Hypothesis. Biotropica, 1995, 27, 334.	1.6	98
38	Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiology, 1996, 16, 883-889.	3.1	95
39	Response of Salt Marsh and Mangrove Wetlands to Changes in Atmospheric CO2, Climate, and Sea Level. , 2012, , 63-96.		89
40	Interspecific Variation in Growth, Biomass Partitioning, and Defensive Characteristics of Neotropical Mangrove Seedlings: Response to Light and Nutrient Availability. American Journal of Botany, 1995, 82, 299.	1.7	85
41	How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise. Estuaries and Coasts, 2021, 44, 883-898.	2.2	83
42	A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environmental and Experimental Botany, 2001, 46, 263-275.	4.2	81
43	Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation. Nature Geoscience, 2012, 5, 803-807.	12.9	81
44	Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism. American Journal of Botany, 2000, 87, 1081-1090.	1.7	76
45	Relative growth of Spartina patens (Ait.) Muhl. and Scirpus olneyi gray occurring in a mixed stand as affected by salinity and flooding depth. Wetlands, 1995, 15, 20-30.	1.5	74
46	Small Gap Creation in Belizean Mangrove Forests by a Wood-Boring Insect1. Biotropica, 1999, 31, 607-617.	1.6	70
47	Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia, 1995, 103, 63-72.	2.0	67
48	Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry, 2008, 87, 181-198.	3.5	66
49	The Influence of Vegetation, Salinity, and Inundation on Seed Banks of Oligohaline Coastal Marshes. American Journal of Botany, 1996, 83, 470.	1.7	66
50	Title is missing!. Mangroves and Salt Marshes, 1997, 1, 103-111.	0.6	65
51	The influence of vegetation, salinity, and inundation on seed banks of oligohaline coastal marshes. American Journal of Botany, 1996, 83, 470-479.	1.7	63
52	Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests?. Journal of Ecology, 2001, 89, 876-887.	4.0	58
53	Intraspecific Variation in Salt Tolerance and Morphology in Panicum hemitomon and Spartina alterniflora (Poaceae). International Journal of Plant Sciences, 1998, 159, 127-138.	1.3	57
54	Seed germination of two Everglades species, Cladium jamaicense and Typha domingensis. Aquatic Botany, 2000, 66, 169-180.	1.6	57

#	Article	IF	CITATIONS
55	Root metabolism in the black mangrove (Avicennia germinans (L.) L): Response to hypoxia. Environmental and Experimental Botany, 1987, 27, 147-156.	4.2	55
56	Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to seaâ€level rise?. Global Change Biology, 2018, 24, 1224-1238.	9.5	53
57	Mangrove Peat Analysis and Reconstruction of Vegetation History at the Pelican Cays, Belize. Atoll Research Bulletin, 2000, 468, 47-58.	0.2	50
58	Population variation in growth response to flooding of three marsh grasses. Ecological Engineering, 1997, 8, 31-47.	3.6	47
59	Live Standing Crop and Metabolism of the Marsh Grass Spartina patens as Related to Edaphic Factors in a Brackish, Mixed Marsh Community in Louisiana. Estuaries and Coasts, 1989, 12, 195.	1.7	44
60	Effects of increased elevation and macro- and micronutrient additions on Spartina alterniflora transplant success in salt-marsh dieback areas in Louisiana. Environmental Management, 1992, 16, 505-511.	2.7	39
61	Clonal integration in Spartina patens across a nitrogen and salinity gradient. Canadian Journal of Botany, 1994, 72, 767-770.	1.1	37
62	Intraspecific Variation in Salt Tolerance and Morphology in the Coastal Grass Spartina patens (Poaceae). American Journal of Botany, 1996, 83, 1521.	1.7	36
63	Effect of long-term flooding on root metabolic response in five freshwater marsh plant species. Canadian Journal of Botany, 1989, 67, 3446-3452.	1.1	35
64	The Influence of Morphology in Determining the Decomposition of Two Salt Marsh Macrophytes. Estuaries and Coasts, 1982, 5, 302.	1.7	33
65	Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE, 2017, 12, e0183431.	2.5	33
66	Determination of adenine nucleotide levels and adenylate energy charge ratio in two Spartina species. Aquatic Botany, $1981, 11, 37-55$.	1.6	31
67	Intraspecific variation in salt tolerance and morphology in the coastal grass <i>spartina patens</i> (poaceae). American Journal of Botany, 1996, 83, 1521-1527.	1.7	31
68	Use of a latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environmental change. Global Ecology and Biogeography, 2004, 13, 247-258.	5.8	31
69	Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Annals of Botany, 2010, 105, 175-184.	2.9	31
70	Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 2015, 179, 863-876.	2.0	31
71	A comparison of indicators of sublethal salinity stress in the salt marsh grass, Spartina patens (Ait.) Muhl Aquatic Botany, 1995, 52, 59-74.	1.6	30
72	A Field Comparison of Indicators of Sublethal Stress in the Salt-Marsh Grass Spartina patens. Estuaries and Coasts, 1997, 20, 48.	1.7	27

#	Article	IF	Citations
73	Interactive effects of redox intensity and phosphate availability on growth and nutrient relations of <i>Cladium jamaicense</i> (Cyperaceae). American Journal of Botany, 2003, 90, 736-748.	1.7	27
74	Water use characteristics of black mangrove (<i>Avicennia germinans</i>) communities along an ecotone with marsh at a northern geographical limit. Ecohydrology, 2014, 7, 354-365.	2.4	27
75	Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA. Geology, 2013, 41, 391-394.	4.4	26
76	The influence of season on adenine nucleotide concentrations and energy charge in four marsh plant species. Physiologia Plantarum, 1984, 62, 1-7.	5.2	23
77	LOUISIANA'S ERODING COASTAL ZONE: MANAGEMENT ALTERNATIVES. Journal of the Limnological Society of Southern Africa, 1983, 9, 63-75.	0.1	20
78	Root phosphatase activity in Cladium jamaicense and Typha domingensis grown in Everglades soil at ambient and elevated phosphorus levels. Wetlands, 2002, 22, 794-800.	1.5	20
79	Effect of flooding on activities of soil dehydrogenases and alcohol dehydrogenase in rice (Oryza) Tj ETQq1 1 0.784	314 rgBT 1.9	/Overlock
80	Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions. Estuarine, Coastal and Shelf Science, 2016, 169, 38-45.	2.1	16
81	The Shifting Saltmarsh-Mangrove Ecotone in Australasia and the Americas. , 2019, , 915-945.		16
82	A comparison of indicators of sub-lethal untrient stress in the salt marsh grass, Spartina patens. Environmental and Experimental Botany, 1995, 35, 331-343.	4.2	15
83	Primary production in an impounded baldcypress swamp (Taxodium distichum) at the northern limit of the range. Wetlands Ecology and Management, 2005, 13, 15-24.	1.5	15
84	Hurricane sedimentation in a subtropical salt marsh-mangrove community is unaffected by vegetation type. Estuarine, Coastal and Shelf Science, 2020, 239, 106733.	2.1	15
85	Indicators of Environmental Stress in Wetland Plants. , 1992, , 603-624.		13
86	Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?. BMC Plant Biology, 2010, 10, 23.	3.6	13
87	Adenylate energy charge (AEC) response to stress and extraction technique in the Louisiana swamp crayfish,Procambarus clarkii. Bulletin of Environmental Contamination and Toxicology, 1984, 33, 584-591.	2.7	12
88	Mangrove Isotopic ($\hat{\Gamma}$ 15 N and $\hat{\Gamma}$ 13 C) Fractionation across a Nitrogen vs. Phosphorus Limitation Gradient. Ecology, 2002, 83, 1065.	3.2	10
89	Does geomorphology determine vulnerability of mangrove coasts to sea-level rise?., 2021, , 255-272.		9
90	The Impact and Mitigation of Man-Made Canals in Coastal Louisiana. Water Science and Technology, 1984, 16, 497-504.	2.5	7

#	Article	IF	CITATIONS
91	Soil warming alters seedâ€bank responses across the geographic range of freshwater <i>Taxodium distichum</i> (Cupressaceae) swamps. American Journal of Botany, 2011, 98, 1943-1955.	1.7	7
92	Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?. Hydrobiologia, 2012, 683, 123-133.	2.0	5
93	Salinity and flooding level as determinants of soil solution composition and nutrient content inPanicum hemitomum. Plant and Soil, 1989, 114, 197-204.	3.7	4
94	Characteristics of mangrove swamps managed for mosquito control in eastern Florida, USA. Marine Ecology - Progress Series, 2008, 371, 117-129.	1.9	4
95	The history of surface-elevation paradigms in mangrove biogeomorphology., 2021,, 179-198.		3
96	Presence of the Herbaceous Marsh Species Schoenoplectus americanus Enhances Surface Elevation Gain in Transitional Coastal Wetland Communities Exposed to Elevated CO2 and Sediment Deposition Events. Plants, 2022, 11, 1259.	3.5	2
97	Perspectives on mosquito impoundments in eastern Florida, USA: Reply to Rey et al. (2009). Marine Ecology - Progress Series, 2009, 389, 301-306.	1.9	0