Winston X Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9773317/publications.pdf

Version: 2024-02-01

		623734 996975	
15	8,014	14	15
papers	citations	h-index	g-index
1.5	1.5	1.5	0516
15	15	15	9516
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineered Cas $12i2$ is a versatile high-efficiency platform for the rapeutic genome editing. Nature Communications, $2022,13,.$	12.8	18
2	CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nature Reviews Microbiology, 2019, 17, 513-525.	28.6	205
3	Functionally diverse type V CRISPR-Cas systems. Science, 2019, 363, 88-91.	12.6	342
4	Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Molecular Cell, 2018, 70, 327-339.e5.	9.7	356
5	Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 2017, 35, 789-792.	17.5	351
6	A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Computational Biology, 2017, 13, e1005807.	3.2	147
7	In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016, 351, 403-407.	12.6	957
8	In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351, 407-411.	12.6	889
9	Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351, 84-88.	12.6	1,948
10	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	27.8	2,237
11	Crystal Structure of Staphylococcus aureus Cas9. Cell, 2015, 162, 1113-1126.	28.9	357
12	Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position. Neurolmage, 2011, 54, 1942-1950.	4.2	64
13	Physical modeling of pulse artefact sources in simultaneous EEG/fMRI. Human Brain Mapping, 2010, 31, 604-620.	3.6	55
14	Source localisation in concurrent EEG/fMRI: Applications at 7T. Neurolmage, 2009, 45, 440-452.	4.2	32
15	Understanding gradient artefacts in simultaneous EEG/fMRI. Neurolmage, 2009, 46, 459-471.	4.2	56