Joshua D Landis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9772921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reductive weathering of black shale and release of barium during hydraulic fracturing. Applied Geochemistry, 2016, 65, 73-86.	3.0	79
2	Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania. Environmental Science & Technology, 2017, 51, 8851-8860.	10.0	65
3	Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition. Precambrian Research, 2012, 192-195, 89-106.	2.7	63
4	Geomorphic controls on groundwater arsenic distribution in the Mekong River Delta, Cambodia. Geology, 2008, 36, 891.	4.4	46
5	Tungsten Speciation and Solubility in Munitions-Impacted Soils. Environmental Science & Technology, 2018, 52, 1045-1053.	10.0	44
6	Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proceedings of the United States of America, 2013, 110, E3557-66.	7.1	43
7	Measurement of 7Be in soils and sediments by gamma spectroscopy. Chemical Geology, 2012, 291, 175-185.	3.3	31
8	Effects of Historical and Modern Mining on Mercury Deposition in Southeastern Peru. Environmental Science & Technology, 2013, 47, 12715-12720.	10.0	30
9	Radium attenuation and mobilization in stream sediments following oil and gas wastewater disposal in western Pennsylvania. Applied Geochemistry, 2018, 98, 393-403.	3.0	28
10	Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM. Environmental Science & Technology, 2008, 42, 3951-3957.	10.0	26
11	Holocene temperature history of northwest Greenland – With new ice cap constraints and chironomid assemblages from DeltasÃ, Quaternary Science Reviews, 2019, 215, 160-172.	3.0	26
12	Quantitative Retention of Atmospherically Deposited Elements by Native Vegetation Is Traced by the Fallout Radionuclides ⁷ Be and ²¹⁰ Pb. Environmental Science & Technology, 2014, 48, 12022-12030.	10.0	25
13	Surficial redistribution of fallout ¹³¹ iodine in a small temperate catchment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4064-4069.	7.1	19
14	Contrasting sensitivity of lake sediment n-alkanoic acids and n-alkanes to basin-scale vegetation and regional-scale precipitation Î'2H in the Adirondack Mountains, NY (USA). Geochimica Et Cosmochimica Acta, 2020, 268, 22-41.	3.9	19
15	Accuracy of methods for reporting inorganic element concentrations and radioactivity in oil and gas wastewaters from the Appalachian Basin, U.S. based on an inter-laboratory comparison. Environmental Sciences: Processes and Impacts, 2019, 21, 224-241.	3.5	18
16	Evidence for basin restriction during syn-collisional basin formation in the Silurian Arisaig Group, Nova Scotia. Chemical Geology, 2008, 256, 1-11.	3.3	17
17	Impact of flow regulation on near-channel floodplain sedimentation. Geomorphology, 2014, 205, 120-127.	2.6	17
18	Beryllium-7 and lead-210 chronometry of modern soil processes: The Linked Radionuclide aCcumulation model, LRC. Geochimica Et Cosmochimica Acta, 2016, 180, 109-125.	3.9	16

Joshua D Landis

#	Article	IF	CITATIONS
19	Erosion and physical transport via overland flow of arsenic and lead bound to silt-sized particles. Geomorphology, 2011, 128, 85-91.	2.6	14
20	Determining lateral migration rates of meandering rivers using fallout radionuclides. Geomorphology, 2010, 123, 364-369.	2.6	11
21	A relict sulfate–methane transition zone in the mid-Devonian Marcellus Shale. Geochimica Et Cosmochimica Acta, 2016, 182, 73-87.	3.9	11
22	Stable source of Holocene spring precipitation recorded in leaf wax hydrogen-isotope ratios from two New York lakes. Quaternary Science Reviews, 2020, 240, 106357.	3.0	11
23	Joint isotopic mass balance: a novel approach to quantifying channel bed to channel margins sediment transfer during storm events. Earth Surface Processes and Landforms, 2015, 40, 1563-1573.	2.5	10
24	Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 2. A model reconciling radium extraction with Marcellus wastewater production. Chemical Geology, 2018, 500, 194-206.	3.3	10
25	Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 1. Source phases that control the release of Ra from Marcellus Shale. Chemical Geology, 2018, 496, 1-13.	3.3	9
26	Radium in hydraulic fracturing wastewater: distribution in suspended solids and implications to its treatment by sulfate co-precipitation. Environmental Sciences: Processes and Impacts, 2019, 21, 339-351.	3.5	8
27	Centennial-scale age offsets of plant wax n-alkanes in Adirondack lake sediments. Geochimica Et Cosmochimica Acta, 2021, 300, 119-136.	3.9	8
28	Late Holocene fluctuations of Quelccaya Ice Cap, Peru, registered by nearby lake sediments. Journal of Quaternary Science, 2015, 30, 830-840.	2.1	6
29	A Top-to-Bottom Luminescence-Based Chronology for the Post-LGM Regression of a Great Basin Pluvial Lake. Quaternary, 2020, 3, 11.	2.0	5
30	Sorption Behavior and Aerosol–Particulate Transitions of ⁷ Be, ¹⁰ Be, and ²¹⁰ Pb: A Basis for Fallout Radionuclide Chronometry. Environmental Science & Technology, 2021, 55, 14957-14967.	10.0	5
31	Age, geochemistry, and significance of Devonian felsic magmatism in the North Slope subterrane, Yukon, Canadian Arctic. , 2019, , 593-618.		5
32	Aerosol Populations, Processes, and Ages in Bulk Deposition: Insights From a 9‥ear Study of ⁷ Be, ²¹⁰ Pb, Sulfate, and Major/Trace Elements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035612.	3.3	3
33	The importance of oxbow lakes in the floodplain storage of pollutants. Geology, 2022, 50, 392-396.	4.4	1