Liang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9771735/publications.pdf

Version: 2024-02-01

25	1,070	20	25
papers	citations	h-index	g-index
32	32	32	975
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pd(II)-Catalyzed Enantioselective C(sp ³)â€"H Arylation of Free Carboxylic Acids. Journal of the American Chemical Society, 2018, 140, 6545-6549.	13.7	145
2	Pd ^{II} â€Catalyzed Enantioselective C(sp ³)â^'H Activation/Crossâ€Coupling Reactions of Free Carboxylic Acids. Angewandte Chemie - International Edition, 2019, 58, 2134-2138.	13.8	124
3	Pd ^{II} â€Catalyzed Enantioselective C(sp ³)â€"H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angewandte Chemie - International Edition, 2020, 59, 9594-9600.	13.8	74
4	Stereoselective synthesis of vinylphosphonates and phosphine oxides via silver-catalyzed phosphorylation of styrenes. Chemical Communications, 2015, 51, 13922-13924.	4.1	68
5	Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science, 2021, 374, 1281-1285.	12.6	64
6	Highly mono-selective <i>ortho</i> -methylthiolation of benzamides <i>via</i> cobalt-catalyzed sp ^{Câ€"H activation. Organic Chemistry Frontiers, 2018, 5, 216-221.}	4.5	49
7	Cobalt-promoted selective arylation of benzamides and acrylamides with arylboronic acids. Organic and Biomolecular Chemistry, 2016, 14, 11070-11075.	2.8	48
8	Copperâ€Mediated <i>ortho</i> â€Arylation of Benzamides with Arylboronic Acid. Advanced Synthesis and Catalysis, 2016, 358, 509-514.	4.3	43
9	Photocatalytic/Cuâ€Promoted Câ^'H Activations: Visibleâ€lightâ€Induced <i>ortho</i> àê€elective Perfluoroalkylation of Benzamides. Chemistry - A European Journal, 2016, 22, 6218-6222.	3.3	43
10	HOTf-Catalyzed, Solvent-Free Oxyarylation of Ynol Ethers and Thioethers. Journal of Organic Chemistry, 2016, 81, 4861-4868.	3.2	40
11	Modular, stereocontrolled C _β â€"H/C _α â€"C activation of alkyl carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8721-8727.	7.1	39
12	Highly mono-selective ortho-trifluoromethylation of benzamides via 8-aminoquinoline assisted Cu-promoted C–H activations. Chemical Communications, 2016, 52, 6845-6848.	4.1	38
13	Pd(II)â€Catalyzed Enantioselective C(sp3)–H Activation/Crossâ€Coupling Reactions of Free Carboxylic Acids. Angewandte Chemie, 2018, 131, 2156.	2.0	34
14	One-Step Synthesis of \hat{l}^2 -Alkylidene- \hat{l}^3 -lactones via Ligand-Enabled \hat{l}^2 , \hat{l}^3 -Dehydrogenation of Aliphatic Acids. Journal of the American Chemical Society, 2022, 144, 12924-12933.	13.7	34
15	Ammonia as Ultimate Amino Source in Synthesis of Primary Amines via Nickel-Promoted C–H Bond Amination. Organic Letters, 2019, 21, 5634-5638.	4.6	32
16	Direct Synthesis of Primary Anilines via Nickelâ€mediated C(<i>sp</i> ²)â€H Aminations. Advanced Synthesis and Catalysis, 2018, 360, 1346-1351.	4.3	30
17	Copper-catalyzed decarboxylative methylthiolation of aromatic carboxylate salts with DMSO. Organic and Biomolecular Chemistry, 2017, 15, 5674-5679.	2.8	27
18	A rapid and selective synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -fluorohalo esters via fluorohalogenative or difluorinative hydration of ynol ethers. Chemical Communications, 2015, 51, 16641-16644.	4.1	24

LIANG HU

#	Article	IF	CITATION
19	Efficient syntheses of 3-hydroxyimino-1-isoindolinones and 3-methylene-1-isoindolinones via Cu-promoted C–H activation–nitroalkylation–intramolecular cyclization tandem processes. Chemical Communications, 2017, 53, 4597-4600.	4.1	21
20	Selective Synthesis of Aryl Nitriles and 3-Imino-1-oxoisoindolines via Nickel-Promoted C(sp ²)â€"H Cyanations. Organic Letters, 2018, 20, 3206-3210.	4.6	20
21	Synthesis of Oxindoles via Ironâ€Mediated Hydrometallationâ€Cyclization of <i>N</i> â€Arylacrylamides. Asian Journal of Organic Chemistry, 2015, 4, 870-874.	2.7	19
22	Synthesis of Benzofulvenes via Cp*Co(III)-Catalyzed Câ€"H Activation and Carbocyclization of Aromatic Ketones with Internal Alkynes. Journal of Organic Chemistry, 2019, 84, 7449-7458.	3.2	19
23	Synthesis of Aryl Alkynes via Copper Catalyzed Decarboxylative Alkynylation of 2-Nitrobenzoic Acids. Journal of Organic Chemistry, 2018, 83, 8556-8566.	3.2	14
24	Pd II â€Catalyzed Enantioselective C(sp 3)–H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angewandte Chemie, 2020, 132, 9681-9687.	2.0	14
25	Synthesis of oxindoles via Cu-mediated reactions between N -phenylacrylamides and ethyl 2-bromo-2-methylpropionate. Tetrahedron Letters, 2018, 59, 612-616.	1.4	7