Yan-Rong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9770891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of Power Sources, 2016, 316, 85-105.	4.0	311
2	Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. Journal of Power Sources, 2013, 222, 448-454.	4.0	199
3	A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics, 2009, 15, 779-784.	1.2	154
4	High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. Journal of Power Sources, 2012, 211, 59-65.	4.0	132
5	Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399, 26-41.	4.0	125
6	Sub-micrometric Li4â~'xNaxTi5O12 (OÂ≤xÂ≤0.2) spinel as anode material exhibiting high rate capability. Journal of Power Sources, 2014, 246, 505-511.	4.0	106
7	Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5ÂV lithium-ion batteries. Ionics, 2011, 17, 383-389.	1.2	94
8	Improved Cycling Stability and Fast Charge–Discharge Performance of Cobalt-Free Lithium-Rich Oxides by Magnesium-Doping. ACS Applied Materials & Interfaces, 2016, 8, 32349-32359.	4.0	86
9	Enhanced rate performance of molybdenum-doped spinel LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium ion battery. Journal of Power Sources, 2014, 247, 778-785.	4.0	84
10	Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics, 2012, 18, 529-539.	1.2	67
11	Rapid Lithiation and Delithiation Property of V-Doped Li ₂ ZnTi ₃ O ₈ as Anode Material for Lithium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2015, 3, 3062-3069.	3.2	59
12	Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Science Bulletin, 2017, 62, 1004-1010.	4.3	56
13	Li ₅ Cr ₇ Ti ₆ O ₂₅ as a novel negative electrode material for lithium-ion batteries. Chemical Communications, 2015, 51, 14050-14053.	2.2	54
14	Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics, 2019, 336, 110-119.	1.3	48
15	Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. Journal of Alloys and Compounds, 2017, 703, 103-113.	2.8	47
16	Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08â^'x Al x O2 (0≤â‰ੳ.08) as cathode materials. Science China Materials, 2016, 59, 618-628.	3.5	46
17	Comparison of structure and electrochemical properties for 5ÂV LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. Journal of Solid State Electrochemistry, 2009, 13, 913-919.	1.2	45
18	Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics, 2016, 22, 1759-1774.	1.2	44

Yan-Rong Zhu

#	Article	IF	CITATIONS
19	Li ₄ Ti ₅ O ₁₂ –LiAlO ₂ Composite as High Performance Anode Material for Lithium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2016, 4, 1994-2003.	3.2	44
20	Kinetic study on LiFePO4-positive electrode material of lithium-ion battery. Ionics, 2011, 17, 437-441.	1.2	42
21	Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 2014, 147, 250-256.	2.6	38
22	Enhanced fast charge–discharge performance of Li ₄ Ti ₅ O ₁₂ as anode materials for lithium-ion batteries by Ce and CeO ₂ modification using a facile method. RSC Advances, 2015, 5, 37367-37376.	1.7	37
23	Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Science China Materials, 2017, 60, 427-437.	3.5	30
24	Robust Strategy for Crafting Li ₅ Cr ₇ Ti ₆ O ₂₅ @CeO ₂ Composites as High-Performance Anode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9. 23662-23671.	4.0	29
25	Interconnected Co3O4@CoNiO2@PPy nanorod and nanosheet composite grown on nickel foam as binder-free electrodes for Li-ion batteries. Solid State Ionics, 2019, 329, 131-139.	1.3	24
26	Improved electrochemical performance of Ag-modified Li4Ti5O12 anode material in a broad voltage window. Journal of Chemical Sciences, 2014, 126, 17-23.	0.7	18
27	Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 cathode material. Russian Journal of Electrochemistry, 2010, 46, 227-232.	0.3	14
28	Thermodynamic stability and transport properties of tavorite LiFeSO ₄ F as a cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19728-19737.	5.2	14
29	Structure and electrochemical performance of BaLi2â^'x Na x Ti6O14 (0≤â‰⊉) as anode materials for lithium-ion battery. Science China Materials, 2017, 60, 728-738.	3.5	13
30	Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li-ion battery. Ceramics International, 2021, 47, 19455-19463.	2.3	13
31	Physicochemical properties of LiAl x Mn2 â^' x O4 and LiAl0.05Mn1.95O4 â^' y F y cathode ma citric acid-assisted sol–gel method. Ionics, 2009, 15, 177-182.	terial by th 1.2	^{he} 10
32	Lithium-Ion Insertion Kinetics of Na-Doped LiFePO4 as Cathode Materials for Lithium-Ion Batteries. Metallurgical and Materials Transactions E, 2015, 2, 33-38.	0.5	5
33	Fabrication of NiO-NiMoO4/PPy microspheres as high-performance anode material for lithium-ion battery. Ionics, 2020, 26, 3823-3830.	1.2	5