
Lenka Podpera TiÅjÄjkovÄj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9770635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical Data on the <i>Gardnerella</i> -Specific Endolysin PM-477 Indicate Its Potential to Improve the Treatment of Bacterial Vaginosis through Enhanced Biofilm Removal and Avoidance of Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0231921.	3.2	12
2	Antimicrobial Susceptibility of Microbiota in Bacterial Vaginosis Using Fluorescence In Situ Hybridization. Pathogens, 2022, 11, 456.	2.8	3
3	Exploiting the Anti-Biofilm Effect of the Engineered Phage Endolysin PM-477 to Disrupt In Vitro Single- and Dual-Species Biofilms of Vaginal Pathogens Associated with Bacterial Vaginosis. Antibiotics, 2022, 11, 558.	3.7	4
4	Engineered Phage Endolysin Eliminates Gardnerella Biofilm without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo. Pathogens, 2021, 10, 54.	2.8	29
5	ε2-Phages Are Naturally Bred and Have a Vastly Improved Host Range in Staphylococcus aureus over Wild Type Phages. Pharmaceuticals, 2021, 14, 325.	3.8	20
6	Natural Bred ε2-Phages Have an Improved Host Range and Virulence against Uropathogenic Escherichia coli over Their Ancestor Phages. Antibiotics, 2021, 10, 1337.	3.7	6
7	Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes, 2018, 54, 130-139.	1.6	40
8	How to approach heterogeneous protein expression for biotechnological use: An overview. Nova Biotechnologica Et Chimica, 2017, 16, 1-11.	0.1	4
9	Phage Endolysin: A Way To Understand A Binding Function Of C-Terminal Domains A Mini Review. Nova Biotechnologica Et Chimica, 2015, 14, 117-134.	0.1	9
10	Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain. FEMS Microbiology Letters, 2014, 350, 199-208.	1.8	9
11	Bioinformatics analysis of bacteriophage and prophage endolysin domains. Biologia (Poland), 2014, 69, 541-556.	1.5	15
12	Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 737-748.	1.5	39