
Jill Dill Pasteris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/977053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Worth a Closer Look: Raman Spectra of Lead-Pipe Scale. Minerals (Basel, Switzerland), 2021, 11, 1047.	2.0	4
2	The Ability of Phosphate To Prevent Lead Release from Pipe Scale When Switching from Free Chlorine to Monochloramine. Environmental Science & Technology, 2020, 54, 879-888.	10.0	36
3	Impact of ironâ€rich scale in service lines on lead release to water. AWWA Water Science, 2020, 2, e1188.	2.1	6
4	Geoscience Meets Biology: Raman Spectroscopy in Geobiology and Biomineralization. Elements, 2020, 16, 111-116.	0.5	9
5	Welcome to Raman Spectroscopy: Successes, Challenges, and Pitfalls. Elements, 2020, 16, 87-92.	0.5	29
6	Impact of orthophosphate on lead release from pipe scale in high pH, low alkalinity water. Water Research, 2020, 177, 115764.	11.3	27
7	Heterogeneous bioapatite carbonation in western painted turtles is unchanged after anoxia. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 233, 74-83.	1.8	2
8	The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomaterialia, 2019, 83, 302-313.	8.3	52
9	Variability in the Raman Spectrum of Unpolished Growth and Fracture Surfaces of Pyrite Due to Laser Heating and Crystal Orientation. Applied Spectroscopy, 2018, 72, 37-47.	2.2	23
10	Formation and Aggregation of Lead Phosphate Particles: Implications for Lead Immobilization in Water Supply Systems. Environmental Science & Technology, 2018, 52, 12612-12623.	10.0	67
11	Heterogeneous Lead Phosphate Nucleation at Organic–Water Interfaces: Implications for Lead Immobilization. ACS Earth and Space Chemistry, 2018, 2, 869-877.	2.7	16
12	Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials, 2017, 127, 75-88.	11.4	77
13	A mineralogical view of apatitic biomaterials. American Mineralogist, 2016, 101, 2594-2610.	1.9	40
14	Tunability of collagen matrix mechanical properties via multiple modes of mineralization. Interface Focus, 2016, 6, 20150070.	3.0	24
15	A mineralogical study in contrasts: highly mineralized whale rostrum and human enamel. Scientific Reports, 2015, 5, 16511.	3.3	10
16	Allometry of the Tendon Enthesis: Mechanisms of Load Transfer Between Tendon and Bone. Journal of Biomechanical Engineering, 2015, 137, 111005.	1.3	52
17	Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347, 746-750.	12.6	184
18	Structural effects on incorporated water in carbonated apatites. American Mineralogist, 2015, 100, 274-280.	1.9	11

JILL DILL PASTERIS

#	Article	IF	CITATIONS
19	A-type substitution in carbonated strontium fluor-, chlor- and hydroxylapatites. Mineralogical Magazine, 2015, 79, 399-412.	1.4	6
20	Long Bone Structure and Strength Depend on BMP2 from Osteoblasts and Osteocytes, but Not Vascular Endothelial Cells. PLoS ONE, 2014, 9, e96862.	2.5	26
21	Molecular water in nominally unhydrated carbonated hydroxylapatite: The key to a better understanding of bone mineral. American Mineralogist, 2014, 99, 16-27.	1.9	71
22	Chemistry of bone mineral, based on the hypermineralized rostrum of the beaked whale Mesoplodon densirostris. American Mineralogist, 2014, 99, 645-653.	1.9	41
23	Synthesis and structure of carbonated barium and lead fluorapatites: Effect of cation size on A-type carbonate substitution. American Mineralogist, 2014, 99, 2176-2186.	1.9	9
24	Tracing the pathway of compositional changes in bone mineral with age: Preliminary study of bioapatite aging in hypermineralized dolphin's bulla. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2331-2339.	2.4	31
25	Hypermineralized Whale Rostrum as the Exemplar for Bone Mineral. Connective Tissue Research, 2013, 54, 167-175.	2.3	20
26	Hypermineralized whale rostrum as the exemplar for bone mineral. Connective Tissue Research, 2013, , 130125073616004.	2.3	0
27	The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. Journal of the Royal Society Interface, 2012, 9, 1774-1786.	3.4	125
28	Dehydration and Rehydration of Carbonated Fluor- and Hydroxylapatite. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.0	Tf 50 382 Td (
29	Synthesis, structure, and solubility of carbonated barium chlor- and hydroxylapatites. Polyhedron, 2012, 44, 143-149.	2.2	21
30	Mineral Distributions at the Developing Tendon Enthesis. PLoS ONE, 2012, 7, e48630.	2.5	168
31	Structural Water in Carbonated Hydroxylapatite and Fluorapatite: Confirmation by Solid State 2H NMR. Calcified Tissue International, 2012, 90, 60-67.	3.1	55
32	The structure and solubility of carbonated hydroxyl and chloro lead apatites. Polyhedron, 2010, 29, 2364-2372.	2.2	23
33	The Nano-Physiology of Mineralized Tissues. , 2009, , .		1
34	Sensitivity of Micro-Raman Spectrum to Crystallite Size of Electrospray-Deposited and Post-Annealed Films of Iron-Oxide Nanoparticle Suspensions. Applied Spectroscopy, 2009, 63, 627-635.	2.2	35
35	Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone. Biophysical Journal, 2009, 97, 976-985.	0.5	290
36	Experimental fluoridation of nanocrystalline apatite. American Mineralogist, 2009, 94, 53-63.	1.9	37

JILL DILL PASTERIS

#	Article	IF	CITATIONS
37	The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization across the Insertion in Rat Tissue Samples. Applied Spectroscopy, 2008, 62, 1285-1294.	2.2	128
38	Immobilization of Lead with Nanocrystalline Carbonated Apatite Present in Fish Bone. Environmental Engineering Science, 2008, 25, 725-736.	1.6	36
39	With a Grain of Salt: What Halite Has to Offer to Discussions on the Origin of Life. Astrobiology, 2006, 6, 625-643.	3.0	22
40	A mineralogical perspective on the apatite in bone. Materials Science and Engineering C, 2005, 25, 131-143.	7.3	709
41	Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials, 2004, 25, 229-238.	11.4	333
42	Development of a laser Raman spectrometer for deep-ocean science. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 739-753.	1.4	142
43	Raman Spectroscopy in the Deep Ocean: Successes and Challenges. Applied Spectroscopy, 2004, 58, 195A-208A.	2.2	73
44	Necessary, but Not Sufficient: Raman Identification of Disordered Carbon as a Signature of Ancient Life. Astrobiology, 2003, 3, 727-738.	3.0	197
45	Understanding the Mineralogical Composition of Ancient Greek Pottery through Raman Microprobe Spectroscopy. Applied Spectroscopy, 2002, 56, 1320-1328.	2.2	29
46	Laser Raman spectroscopy used to study the ocean at 3600-m depth. Eos, 2002, 83, 469.	0.1	12
47	Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chemical Geology, 2001, 180, 3-18.	3.3	122
48	Extremely acid Permian lakes and ground waters in North America. Nature, 1998, 392, 911-914.	27.8	75
49	Fluid-Deposited Graphitic Inclusions in Quartz: Comparison Between KTB (German Continental) Tj ETQq1 1 0.784 Cosmochimica Acta, 1998, 62, 109-122.	4314 rgBT 3.9	Överlock 10 55
50	Enlightening Points. Science News, 1994, 146, 19.	0.1	0
51	Quantitative Analysis of Mixed Volatile Fluids by Raman Microprobe Spectroscopy: A Cautionary Note on Spectral Resolution and Peak Shape. Applied Spectroscopy, 1993, 47, 816-820.	2.2	9
52	Analysis of individual fluid inclusions by Fourier transform infrared and Raman microspectroscopy. Geochimica Et Cosmochimica Acta, 1990, 54, 519-533.	3.9	73
53	High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe. Geochimica Et Cosmochimica Acta, 1990, 54, 535-543.	3.9	78
54	Theoretical and practical aspects of differential partitioning of gases by clathrate hydrates in fluid inclusions. Geochimica Et Cosmochimica Acta, 1990, 54, 631-639.	3.9	33

JILL DILL PASTERIS

#	Article	IF	CITATIONS
55	Recent Advances In The Analysis And Interpretation Of C-O-H-N Fluids By Application Of Laser Raman Microspectroscopy. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 276-277.	0.0	1
56	Zambales ophiolite, Philippines. Contributions To Mineralogy and Petrology, 1989, 103, 64-77.	3.1	36
57	Erratum to Geochim. Cosmochim Geochimica Et Cosmochimica Acta, 1989, 53, 215.	3.9	2
58	Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochimica Et Cosmochimica Acta, 1988, 52, 979-988.	3.9	112
59	Secondary graphitization in mantle-derived rocks. Geology, 1988, 16, 804.	4.4	22
60	Interpretation of the sulfide assemblages in a suite of xenoliths from Kilbourne Hole, New Mexico. Special Paper of the Geological Society of America, 1987, , 25-46.	0.5	41
61	Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe. Analytical Chemistry, 1987, 59, 2165-2170.	6.5	118
62	Characterization of CO2î—,CH4î—,H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: Inferences for clathrate and fluid equilibria. Geochimica Et Cosmochimica Acta, 1987, 51, 1651-1664.	3.9	71
63	Limitations to Quantitative Analysis of Fluid Inclusions in Geological Samples by Laser Raman Microprobe Spectroscopy. Applied Spectroscopy, 1986, 40, 144-151.	2.2	105
64	Applications of the laser Raman microprobe RAMANOR U-1000 to hydrothermal ore deposits; Carlin as an example. Economic Geology, 1986, 81, 915-930.	3.8	32
65	Adaptation of SGE-USGS heating-freezing stage for operation down to -196 degrees C. Economic Geology, 1983, 78, 164-169.	3.8	2
66	Kimberlites: Strange bodies?. Eos, 1981, 62, 713-716.	0.1	4
67	The significance of groundmass ilmenite and megacryst ilmenite in kimberlites. Contributions To Mineralogy and Petrology, 1981, 75, 315-325.	3.1	31
68	Occurrence of graphite in serpentinized olivines in kimberlite. Geology, 1981, 9, 356.	4.4	41