Shengwang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9770079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PFT-α inhibits gallid alpha herpesvirus 1 replication by repressing host nucleotide metabolism and ATP synthesis. Veterinary Microbiology, 2022, 269, 109435.	0.8	5
2	Surveillance of Class I Newcastle Disease Virus at Live Bird Markets in China and Identification of Variants with Increased Virulence and Replication Capacity. Journal of Virology, 2022, 96, e0024122.	1.5	6
3	Polarization of avian macrophages upon avian flavivirus infection. Veterinary Microbiology, 2021, 256, 109044.	0.8	8
4	Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. Journal of Virology, 2021, 95, e0228820.	1.5	14
5	Fos Facilitates Gallid Alpha-Herpesvirus 1 Infection by Transcriptional Control of Host Metabolic Genes and Viral Immediate Early Gene. Viruses, 2021, 13, 1110.	1.5	7
6	Replication and vaccine protection of multiple infectious bronchitis virus strains in pheasants (Phasianus colchicus). Infection, Genetics and Evolution, 2021, 93, 104980.	1.0	1
7	Single-Cell Analysis of the In Vivo Dynamics of Host Circulating Immune Cells Highlights the Importance of Myeloid Cells in Avian Flaviviral Infection. Journal of Immunology, 2021, 207, 2878-2891.	0.4	3
8	Genetic, antigenic and pathogenic characterization of avian coronaviruses isolated from pheasants (Phasianus colchicus) in China. Veterinary Microbiology, 2020, 240, 108513.	0.8	9
9	Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes, 2020, 56, 734-748.	0.7	3
10	Genetic and antigenic heterogeneity of Gl-1/Massachusetts lineage infectious bronchitis virus variants recently isolated in China. Poultry Science, 2020, 99, 5440-5451.	1.5	4
11	Protection of chicks from Newcastle disease by combined vaccination with a plasmid DNA and the pre-fusion protein of the virulent genotype VII of Newcastle disease virus. Vaccine, 2020, 38, 7337-7349.	1.7	3
12	Glycoprotein-C-gene-deleted recombinant infectious laryngotracheitis virus expressing a genotype VII Newcastle disease virus fusion protein protects against virulent infectious laryngotracheitis virus and Newcastle disease virus. Veterinary Microbiology, 2020, 250, 108835.	0.8	2
13	Global exploration of the metabolic requirements of gallid alphaherpesvirus 1. PLoS Pathogens, 2020, 16, e1008815.	2.1	11
14	A highly pathogenic GI-19 lineage infectious bronchitis virus originated from multiple recombination events with broad tissue tropism. Virus Research, 2020, 285, 198002.	1.1	8
15	Multiple recombination events between field and vaccine strains resulted in the emergence of a novel infectious bronchitis virus with decreased pathogenicity and altered replication capacity. Poultry Science, 2020, 99, 1928-1938.	1.5	14
16	Genetic, Antigenic, and Pathogenic Characteristics of Infectious Bronchitis Virus GI-7/TW-II in China. Avian Diseases, 2020, 64, 183.	0.4	6
17	Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology, 2019, 537, 1-13.	1.1	7
18	Molecular and biological characteristics of the infectious bronchitis virus TC07-2/GVI-1 lineage isolated in China. Infection, Genetics and Evolution, 2019, 75, 103942.	1.0	18

SHENGWANG LIU

#	Article	IF	CITATIONS
19	Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. Journal of Virology, 2019, 93, .	1.5	32
20	Rapid and sensitive real-time recombinase polymerase amplification for detection of Marek's disease virus. Molecular and Cellular Probes, 2019, 48, 101468.	0.9	13
21	Novel genotype of infectious bronchitis virus isolated in China. Veterinary Microbiology, 2019, 230, 178-186.	0.8	60
22	Genetic and biological characteristics of four novel recombinant avian infectious bronchitis viruses isolated in China. Virus Research, 2019, 263, 87-97.	1.1	15
23	Characterization of the complete genome, antigenicity, pathogenicity, tissue tropism, and shedding of a recombinant avian infectious bronchitis virus with a ck/CH/LJL/140901-like backbone and an S2 fragment from a 4/91-like virus. Virus Research, 2018, 244, 99-109.	1.1	17
24	Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus. Virus Research, 2018, 250, 104-113.	1.1	32
25	Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge. Vaccine, 2018, 36, 7975-7986.	1.7	11
26	Genetics, antigenicity and virulence properties of three infectious bronchitis viruses isolated from a single tracheal sample in a chicken with respiratory problems. Virus Research, 2018, 257, 82-93.	1.1	9
27	Genetic diversity of avian infectious bronchitis virus in China in recent years. Infection, Genetics and Evolution, 2018, 66, 82-94.	1.0	43
28	Gallid Herpesvirus 1 Initiates Apoptosis in Uninfected Cells through Paracrine Repression of p53. Journal of Virology, 2018, 92, .	1.5	9
29	Induction of Avian β-Defensin 2 Is Possibly Mediated by the p38 MAPK Signal Pathway in Chicken Embryo Fibroblasts After Newcastle Disease Virus Infection. Frontiers in Microbiology, 2018, 9, 751.	1.5	21
30	Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Veterinary Microbiology, 2017, 198, 108-115.	0.8	62
31	Genetic, antigenic, and pathogenic characteristics of avian infectious bronchitis viruses genotypically related to 793/B in China. Veterinary Microbiology, 2017, 203, 125-135.	0.8	15
32	Genetic, antigenic, and pathogenic characteristics of Newcastle disease viruses isolated from geese in China. Journal of Veterinary Diagnostic Investigation, 2017, 29, 489-498.	0.5	17
33	Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge. Vaccine, 2017, 35, 2435-2442.	1.7	32
34	Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin–neuraminidase (HN) glycoprotein. Journal of Biological Chemistry, 2017, 292, 20141-20161.	1.6	17
35	Integrated High Throughput Analysis Identifies GSK3 as a Crucial Determinant of p53-Mediated Apoptosis in Lung Cancer Cells. Cellular Physiology and Biochemistry, 2017, 42, 1177-1191.	1.1	13
36	Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China. Infection, Genetics and Evolution, 2017, 54, 437-446.	1.0	46

SHENGWANG LIU

#	Article	IF	CITATIONS
37	Glutamine Ameliorates Mucosal Damage Caused by Immune Responses to Duck Plague Virus. Dose-Response, 2017, 15, 155932581770867.	0.7	6
38	Origin and evolution of LX4 genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2017, 198, 9-16.	0.8	19
39	Isolation and Characteristics of the Arkansas-Type Infectious Bronchitis Virus in China. Avian Diseases, 2017, 62, 18.	0.4	4
40	Infection of Goose with Genotype VIId Newcastle Disease Virus of Goose Origin Elicits Strong Immune Responses at Early Stage. Frontiers in Microbiology, 2016, 7, 1587.	1.5	17
41	Altered pathogenicity of a tl/CH/LDT3/03 genotype infectious bronchitis coronavirus due to natural recombination in the 5′- 17 kb region of the genome. Virus Research, 2016, 213, 140-148.	1.1	26
42	Fowl adenovirus species C serotype 4 is attributed to the emergence of hepatitis-hydropericardium syndrome in chickens in China. Infection, Genetics and Evolution, 2016, 45, 230-241.	1.0	72
43	Characterization and pathogenicity of a novel mammalian orthoreovirus from wild short-nosed fruit bats. Infection, Genetics and Evolution, 2016, 43, 347-353.	1.0	19
44	Serotype, antigenicity, and pathogenicity of a naturally recombinant TW I genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2016, 191, 1-8.	0.8	27
45	Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens. Antiviral Research, 2016, 130, 19-26.	1.9	27
46	Emergence of novel nephropathogenic infectious bronchitis viruses currently circulating in Chinese chicken flocks. Avian Pathology, 2016, 45, 54-65.	0.8	29
47	Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. Journal of Virology, 2016, 90, 9-21.	1.5	10
48	Molecular and antigenic characteristics of Massachusetts genotype infectious bronchitis coronavirus in China. Veterinary Microbiology, 2015, 181, 241-251.	0.8	34
49	Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus. Applied Microbiology and Biotechnology, 2015, 99, 9011-9024.	1.7	26
50	Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1. Applied and Environmental Microbiology, 2015, 81, 6415-6424.	1.4	15
51	Serotype shift of a 793/B genotype infectious bronchitis coronavirus by natural recombination. Infection, Genetics and Evolution, 2015, 32, 377-387.	1.0	41
52	Molecular and antigenic characteristics of Newcastle disease virus isolates from domestic ducks in China. Infection, Genetics and Evolution, 2015, 32, 34-43.	1.0	27
53	Isolation and pathogenicity of the mammalian orthoreovirus MPC/04 from masked civet cats. Infection, Genetics and Evolution, 2015, 36, 55-61.	1.0	25
54	Adaptation and Attenuation of Duck Tembusu Virus Strain Du/CH/LSD/110128 following Serial Passage in Chicken Embryos. Vaccine Journal, 2014, 21, 1046-1053.	3.2	27

SHENGWANG LIU

#	ARTICLE	IF	CITATIONS
55	Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics, 2014, 14, 1403-1423.	1.3	22
56	Origin and characteristics of the recombinant novel avian infectious bronchitis coronavirus isolate ck/CH/LJL/111054. Infection, Genetics and Evolution, 2014, 23, 189-195.	1.0	22
57	A comparative study of pigeons and chickens experimentally infected with PPMV-1 to determine antigenic relationships between PPMV-1 and NDV strains. Veterinary Microbiology, 2014, 168, 88-97.	0.8	53
58	Characterization of a recombinant coronavirus infectious bronchitis virus with distinct S1 subunits of spike and nucleocapsid genes and a 3′ untranslated region. Veterinary Microbiology, 2013, 162, 429-436.	0.8	37
59	Comparative analysis of four Massachusetts type infectious bronchitis coronavirus genomes reveals a novel Massachusetts type strain and evidence of natural recombination in the genome. Infection, Genetics and Evolution, 2013, 14, 29-38.	1.0	24
60	Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genomics, 2013, 14, 743.	1.2	76
61	Corrigendum to "Discovery and characterization of <i>Coturnix chinensis</i> avian <i>β</i> â€defensin 10, with broad antibacterial activityâ€. J. Pept. Sci. 2012; 18: 224–232. Journal of Peptide Science, 2013, 19, 459-459.	0.8	0
62	Molecular Characterization and Pathogenicity of Infectious Bronchitis Coronaviruses: Complicated Evolution and Epidemiology in China Caused by Cocirculation of Multiple Types of Infectious Bronchitis Coronaviruses. Intervirology, 2009, 52, 223-234.	1.2	44
63	Evaluation of the protection conferred by commercial vaccines and attenuated heterologous isolates in China against the CK/CH/LDL/97I strain of infectious bronchitis coronavirus. Veterinary Journal, 2009, 179, 130-136.	0.6	43
64	Altered pathogenicity, immunogenicity, tissue tropism and 3â€2-7kb region sequence of an avian infectious bronchitis coronavirus strain after serial passage in embryos. Vaccine, 2009, 27, 4630-4640.	1.7	38
65	Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene, 2008, 412, 12-25.	1.0	18
66	Identification of a Newly Isolated Avian Infectious Bronchitis Coronavirus Variant in China Exhibiting Affinity for the Respiratory Tract. Avian Diseases, 2008, 52, 306-314.	0.4	19
67	Phylogeny of Duck Enteritis Virus: Evolutionary Relationship in the Family <i>Herpesviridae</i> . Intervirology, 2008, 51, 151-165.	1.2	7
68	Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV). Gene, 2007, 401, 88-96.	1.0	48
69	S1 gene sequence heterogeneity of a pathogenic infectious bronchitis virus strain and its embryo-passaged, attenuated derivatives. Avian Pathology, 2007, 36, 231-234.	0.8	42
70	Infectious bronchitis virus: S1 gene characteristics of vaccines used in China and efficacy of vaccination against heterologous strains from China. Avian Pathology, 2006, 35, 394-399.	0.8	61
71	Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). Journal of General Virology, 2005, 86, 719-725.	1.3	122