Peter Nai Yuh Yek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/976746/publications.pdf

Version: 2024-02-01

41 papers

2,954 citations

279798 23 h-index 345221 36 g-index

41 all docs

41 docs citations

41 times ranked

2282 citing authors

#	Article	IF	CITATIONS
1	Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 2020, 389, 124401.	12.7	484
2	Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Chemical Engineering Research and Design, 2018, 115, 57-69.	5.6	234
3	Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production, 2017, 162, 1376-1387.	9.3	213
4	Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource Technology, 2018, 266, 1-10.	9.6	213
5	Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renewable and Sustainable Energy Reviews, 2021, 135, 110148.	16.4	206
6	Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye. Journal of Hazardous Materials, 2020, 395, 122636.	12.4	142
7	Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products. Renewable and Sustainable Energy Reviews, 2020, 127, 109871.	16.4	140
8	Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. Journal of Cleaner Production, 2019, 208, 1436-1445.	9.3	129
9	Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon. Journal of Environmental Management, 2019, 236, 245-253.	7.8	120
10	Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy, 2018, 162, 309-317.	8.8	116
11	Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. Journal of Hazardous Materials, 2020, 390, 121649.	12.4	110
12	Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters, 2021, 19, 2127-2140.	16.2	109
13	Selfâ€purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbonâ€rich biochar for methylene blue adsorption. Journal of Chemical Technology and Biotechnology, 2019, 94, 1397-1405.	3.2	91
14	Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. Journal of Hazardous Materials, 2020, 396, 122610.	12.4	81
15	Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties. Chemical Engineering Research and Design, 2019, 128, 30-35.	5.6	80
16	Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water. Industrial & Engineering Chemistry Research, 2019, 58, 695-703.	3.7	77
17	Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation. Journal of Chemical Technology and Biotechnology, 2019, 94, 1406-1415.	3.2	61
18	Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review. Renewable and Sustainable Energy Reviews, 2021, 151, 111645.	16.4	55

#	Article	IF	CITATIONS
19	Applying microwave vacuum pyrolysis to design moisture retention and pH neutralizing palm kernel shell biochar for mushroom production. Bioresource Technology, 2020, 312, 123572.	9.6	48
20	A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere, 2022, 288, 132559.	8.2	43
21	Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel. Renewable and Sustainable Energy Reviews, 2021, 152, 111699.	16.4	29
22	Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach: Recent progress and future directions. Bioresource Technology, 2022, 347, 126687.	9.6	28
23	Production of modified biochar to treat landfill leachate using integrated microwave pyrolytic CO2 activation. Chemical Engineering Journal, 2021, 425, 131886.	12.7	27
24	Engineered biochar produced through microwave pyrolysis as a fuel additive in biodiesel combustion. Fuel, 2022, 312, 122839.	6.4	24
25	Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water. Science of the Total Environment, 2022, 833, 154968.	8.0	18
26	Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies, 2020, 3, 728-733.	1.8	15
27	Fungal Fermented Palm Kernel Expeller as Feed for Black Soldier Fly Larvae in Producing Protein and Biodiesel. Journal of Fungi (Basel, Switzerland), 2022, 8, 332.	3.5	13
28	Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon. E3S Web of Conferences, 2017, 22, 00195.	0.5	11
29	Microwave wet torrefaction: A catalytic process to convert waste palm shell into porous biochar. Materials Science for Energy Technologies, 2020, 3, 742-747.	1.8	11
30	Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials. E3S Web of Conferences, 2018, 34, 01028.	0.5	4
31	Effect of Temperature on the Yield of Lignin Extracted Using Microwave-Assisted Acetosolv from Empty Fruit Bunch Fibers. Materials Science Forum, 0, 981, 240-244.	0.3	4
32	Integration of microwave co-torrefaction with helical lift for pellet fuel production. Green Processing and Synthesis, 2022, 11, 404-410.	3.4	4
33	Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size. IOP Conference Series: Materials Science and Engineering, 2018, 429, 012084.	0.6	3
34	Heat and Flow Characteristics of Nanofluid Flow in Porous Microchannels. International Journal of Automotive and Mechanical Engineering, 2018, 15, 5238-5250.	0.9	3
35	Formation of Stainless Steel Nanoballs via Submerged Glow-discharge Plasma and their Microstructural Analysis with Evaluation of Photocatalytic Activity. ISIJ International, 2018, 58, 1162-1167.	1.4	2
36	Micro-particle biochar for soil carbon pool management: Application and mechanism. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105229.	5.5	2

#	Article	IF	CITATIONS
37	A novel microwave air heater integrated with thermal energy storage. International Journal of Energy Research, 0, , .	4.5	2
38	Development of self-sustainable pyrolysis system to produce porous biochar from palm kernel shell. Biomass Conversion and Biorefinery, 2024, 14, 3777-3784.	4.6	1
39	Production of biochar using sustainable microwave pyrolysis approach. , 2022, , 323-332.		1
40	Controlled nanocrystallites growth of plasma-treated Cu sheets. IOP Conference Series: Materials Science and Engineering, 2018, 429, 012085.	0.6	0
41	Biochar Waste Palm Shell for NO _X Post-Emission Reduction in Biodiesel Combustion. Key Engineering Materials, 0, 914, 193-198.	0.4	0