List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9767296/publications.pdf Version: 2024-02-01

		66343	66911
121	6,534	42	78
papers	citations	h-index	g-index
122	122	122	5823
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of the A549 Cell Line as a Type II Pulmonary Epithelial Cell Model for Drug Metabolism. Experimental Cell Research, 1998, 243, 359-366.	2.6	531
2	Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9355-9358.	7.1	424
3	Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. Journal of Pharmaceutical Sciences, 2001, 90, 1681-1698.	3.3	247
4	The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharmaceutical Research, 1990, 07, 435-451.	3.5	246
5	Quantitative Approaches To Delineate Paracellular Diffusion in Cultured Epithelial Cell Monolayers. Journal of Pharmaceutical Sciences, 1994, 83, 1529-1536.	3.3	233
6	Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharmaceutical Research, 1986, 03, 81-87.	3.5	224
7	Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery. International Journal of Pharmaceutics, 2000, 208, 1-11.	5.2	214
8	A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit Pâ€glycoprotein activity in vitro. Journal of Pharmaceutical Sciences, 2002, 91, 1991-2002.	3.3	203
9	Bovine Brain Microvessel Endothelial Cell Monolayers as a Model System for the Blood-Brain Barrier. Annals of the New York Academy of Sciences, 1987, 507, 9-18.	3.8	168
10	Efflux transporters of the human placenta. Advanced Drug Delivery Reviews, 2003, 55, 125-132.	13.7	148
11	Nitric Oxide and Blood–Brain Barrier Integrity. Antioxidants and Redox Signaling, 2001, 3, 273-278.	5.4	144
12	Passive Diffusion of Weak Organic Electrolytes across Cacoâ€2 Cell Monolayers: Uncoupling the Contributions of Hydrodynamic, Transcellular, and Paracellular Barriers. Journal of Pharmaceutical Sciences, 1995, 84, 1197-1204.	3.3	138
13	Effects of Poly(ethylene glycol) on Efflux Transporter Activity in Cacoâ€2 Cell Monolayers. Journal of Pharmaceutical Sciences, 2002, 91, 1980-1990.	3.3	136
14	Nutrient transport across the placenta. Advanced Drug Delivery Reviews, 1999, 38, 41-58.	13.7	120
15	Characteristics of the Large Neutral Amino Acid Transport System of Bovine Brain Microvessel Endothelial Cell Monolayers. Journal of Neurochemistry, 1986, 47, 484-488.	3.9	110
16	Controlling drug delivery across the placenta. European Journal of Pharmaceutical Sciences, 1999, 8, 161-165.	4.0	109
17	Chemical Modification of Paclitaxel (Taxol) Reduces P-Glycoprotein Interactions and Increases Permeation across the Bloodâ^'Brain Barrier in Vitro and in Situ. Journal of Medicinal Chemistry, 2005, 48, 832-838.	6.4	100
18	Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. International Journal of Pharmaceutics, 1994, 110, 29-35.	5.2	98

#	Article	IF	CITATIONS
19	Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells. Free Radical Biology and Medicine, 1991, 11, 361-371.	2.9	93
20	Role of P-glycoprotein in transplacental transfer of methadone. Biochemical Pharmacology, 2005, 69, 1869-1878.	4.4	84
21	Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharmaceutical Research, 2016, 33, 2847-2878.	3.5	84
22	P-glycoprotein efflux pump expression and activity in Calu-3 cells. Journal of Pharmaceutical Sciences, 2001, 90, 647-658.	3.3	82
23	Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers. Microvascular Research, 1990, 39, 1-14.	2.5	79
24	Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharmaceutical Research, 1988, 05, 369-371.	3.5	76
25	Partial maintenance of taurocholate uptake by adult rat hepatocytes cultured in a collagen sandwich configuration. Pharmaceutical Research, 1998, 15, 1533-1539.	3.5	76
26	Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Research, 1999, 831, 229-236.	2.2	71
27	Functional expression of P-glycoprotein in primary cultures of human cytotrophoblasts and BeWo cellsâ~†. Reproductive Toxicology, 2000, 14, 217-224.	2.9	70
28	Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. European Journal of Pharmacology, 1994, 269, 243-248.	2.6	69
29	Catecholamineâ€Metabolizing Enzymes of Bovine Brain Microvessel Endothelial Cell Monolayers. Journal of Neurochemistry, 1986, 46, 1956-1960.	3.9	67
30	The application of bovine brain microvessel endothelial-cell monolayers grown onto polycarbonate membranes in vitro to estimate the potential permeability of solutes through the blood-brain barrier. Pharmaceutical Research, 1989, 06, 624-627.	3.5	66
31	Permeability of the blood-brain barrier to peptides: An approach to the development of therapeutically useful analogs. Peptides, 1992, 13, 1289-1294.	2.4	59
32	Modulation of P-glycoprotein activity in Calu-3 cells using steroids and β-ligands. International Journal of Pharmaceutics, 2001, 228, 171-179.	5.2	59
33	Improving the selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junction of MDCK cell monolayers. Pharmaceutical Research, 2001, 18, 446-453.	3.5	55
34	Blood—Brain Barrier: Transport Studies in Isolated Brain Capillaries and in Cultured Brain Endothelial Cells. Advances in Pharmacology, 1991, 22, 137-165.	2.0	54
35	Carrier-mediated transport of valproic acid in BeWo cells, a human trophoblast cell line. International Journal of Pharmaceutics, 2000, 195, 115-124.	5.2	54
36	Fatty Acid Transport Regulatory Proteins in the Developing Rat Placenta and in Trophoblast Cell Culture Models. Placenta, 2000, 21, 367-375.	1.5	54

#	Article	IF	CITATIONS
37	Relationship of octanol/buffer and octanol/water partition coefficients to transcellular diffusion across brain microvessel endothelial cell monolayers. International Journal of Pharmaceutics, 1986, 32, 79-84.	5.2	51
38	Increasing paracellular porosity by E-cadherin peptides: discovery of bulge and groove regions in the EC1-domain of E-cadherin. Pharmaceutical Research, 2002, 19, 1170-1179.	3.5	51
39	Cultured buccal epithelium: an in vitro model derived from the hamster pouch for studying drug transport and metabolism. Pharmaceutical Research, 1989, 06, 160-166.	3.5	50
40	Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Research, 1997, 747, 103-113.	2.2	50
41	Angiotensin Peptide Regulation of Fluid-Phase Endocytosis in Brain Microvessel Endothelial Cell Monolayers. Journal of Cerebral Blood Flow and Metabolism, 1990, 10, 827-834.	4.3	48
42	Overcoming the Blood-Brain Barrier to Taxane Delivery for Neurodegenerative Diseases and Brain Tumors. Journal of Molecular Neuroscience, 2003, 20, 339-344.	2.3	44
43	In vitro nasal transport across ovine mucosa: effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptide, mannitol, and lucifer yellow. Pharmaceutical Research, 1993, 10, 553-561.	3.5	41
44	Effect of some penetration enhancers on epithelial membrane lipid domains: evidence from fluorescence spectroscopy studies. Pharmaceutical Research, 1994, 11, 288-294.	3.5	41
45	Characteristics of Aminopeptidase Activity from Bovine Brain Microvessel Endothelium. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 801-805.	4.3	38
46	Angiotensin Peptide Regulation of Bovine Brain Microvessel Endothelial Cell Monolayer Permeability. Journal of Cardiovascular Pharmacology, 1991, 18, 212-218.	1.9	38
47	Investigation of substance P transport across the blood-brain barrier. Peptides, 2002, 23, 157-165.	2.4	37
48	Investigation of the metabolism of substance P at the blood-brain barrier using capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis, 2001, 22, 3778-3784.	2.4	34
49	Characteristics of the Fetal/Maternal Interface with Potential Usefulness in the Development of Future Immunological and Pharmacological Strategies. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 402-409.	2.5	34
50	The Presence of Inducible Cytochrome P450 Types 1A1 and 1A2 in the BeWo Cell Line. Placenta, 2003, 24, 45-52.	1.5	34
51	Tetrazole compounds: The effect of structure and pH on Caco-2 cell permeability. Journal of Pharmaceutical Sciences, 2006, 95, 717-725.	3.3	34
52	21-aminosteroid and 2-(aminomethyl)chromans inhibition of arachidonic acid-induced lipid peroxidation and permeability enhancement in bovine brain microvessel endothelial cell monolayers. Free Radical Biology and Medicine, 1995, 19, 349-357.	2.9	33
53	Characteristics of Substance P Transport Across the Blood–Brain Barrier. Pharmaceutical Research, 2006, 23, 1201-1208.	3.5	32
54	Comparison of the Effects of Potential Parenteral Vehicles for Poorly Water Soluble Anticancer Drugs (Organic Cosolvents and Cyclodextrin Solutions) on Cultured Endothelial Cells (HUV-EC). Journal of Pharmaceutical Sciences, 1998, 87, 1138-1143.	3.3	30

#	Article	IF	CITATIONS
55	Novel Organic Cation Transporter 2-Mediated Carnitine Uptake in Placental Choriocarcinoma (BeWo) Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 192-198.	2.5	30
56	Physicochemical factors affecting β-adrenergic antagonist permeation across cultured hamster pouch buccal epithelium. International Journal of Pharmaceutics, 1989, 56, 135-142.	5.2	29
57	Transport and metabolism of opioid peptides across BeWo cells, an in vitro model of the placental barrier. International Journal of Pharmaceutics, 2002, 233, 85-98.	5.2	29
58	Aluminum effects on brain microvessel endothelial cell monolayer permeability. International Journal of Pharmaceutics, 1988, 45, 249-257.	5.2	28
59	Chlorhexidine Effects on Membrane Lipid Domains of Human Buccal Epithelial Cells. Journal of Dental Research, 1992, 71, 1298-1303.	5.2	28
60	Receptor-mediated angiotensin II transcytosis by brain microvessel endothelial cells. Peptides, 1998, 19, 1023-1030.	2.4	28
61	Tricyclic Antidepressant Effects on the Murine Lymphocyte Mitogen Response. Immunopharmacology and Immunotoxicology, 1982, 4, 13-27.	0.8	27
62	AT1 Receptors Mediate Angiotensin II Uptake and Transport by Bovine Brain Microvessel Endothelial Cells in Primary Culture. Journal of Cardiovascular Pharmacology, 1999, 33, 30-35.	1.9	27
63	Paclitaxel succinate analogs: Anionic and amide introduction as a strategy to impart blood–brain barrier permeability. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5971-5974.	2.2	26
64	Biotin uptake and transport across bovine brain microvessel endothelial cell monolayers. Pharmaceutical Research, 1993, 10, 282-288.	3.5	25
65	Peptide transport and metabolism across the placenta. Advanced Drug Delivery Reviews, 1999, 38, 59-67.	13.7	25
66	Carrier-mediated Transport of Folic Acid in BeWo Cell Monolayers as a Model of the Human Trophoblast. Placenta, 2001, 22, 863-869.	1.5	25
67	Leucine-enkephalin metabolism in brain microvessel endothelial cells. Peptides, 1994, 15, 109-116.	2.4	24
68	Carrier-mediated transport of monocarboxylic acids in BeWo cell monolayers as a model of the human trophoblast. Journal of Pharmaceutical Sciences, 1999, 88, 1288-1292.	3.3	24
69	Enhancement of Transport of D-Melphalan Analogue by Conjugation with L-Glutamate across Bovine Brain Microvessel Endothelial Cell Monolayers. Journal of Drug Targeting, 2000, 8, 195-204.	4.4	24
70	Permeability and Metabolic Properties of a Trophoblast Cell Line (HRP-1) Derived from Normal Rat Placenta. Experimental Cell Research, 1997, 234, 147-155.	2.6	23
71	Evaluation of the role of P-glycoprotein in ivermectin uptake by primary cultures of bovine brain microvessel endothelial cells. Neurochemical Research, 1998, 23, 203-209.	3.3	23
72	Amyloid peptide toxicity and microtubule-stabilizing drugs. Journal of Molecular Neuroscience, 2002, 19, 101-105.	2.3	22

#	Article	IF	CITATIONS
73	Substrate specificity of phenol sulfotransferase from primary cultures of bovine brain microvessel endothelium. Neurochemical Research, 1989, 14, 689-691.	3.3	20
74	Demonstration of Acid Hydrolase Activity in Primary Cultures of Bovine Brain Microvessel Endothelium. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 280-289.	4.3	20
75	Primary culture of rat gastric epithelial cells as an in vitro model to evaluate antiulcer agents. Pharmaceutical Research, 1994, 11, 77-82.	3.5	20
76	Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochemical Pharmacology, 2008, 75, 745-751.	4.4	20
77	Biochemical characteristics of primary and passaged cultures of primate brain microvessel endothelial cells. Neurochemical Research, 1994, 19, 427-433.	3.3	19
78	MRP isoforms and BCRP mediate sulfate conjugate efflux out of BeWo cells. International Journal of Pharmaceutics, 2010, 384, 15-23.	5.2	19
79	Characteristics of Tricyclic Antidepressant Binding Sites Associated with Murine Lymphocytes from Spleen. Immunopharmacology and Immunotoxicology, 1982, 4, 1-12.	0.8	18
80	Contribution of Efflux Pump Activity to the Delivery of Pulmonary Therapeutics. Current Drug Metabolism, 2002, 3, 1-12.	1.2	18
81	Effects of selected vasoactive substances on adenylate cyclase activity in brain, isolated brain microvessels, and primary cultures of brain microvessel endothelial cells. Neurochemical Research, 1992, 17, 209-214.	3.3	17
82	Leucine Enkephalin Effects on Paracellular and Transcellular Permeation Pathways Across Brain Microvessel Endothelial Cell Monolayers. Journal of Cardiovascular Pharmacology, 1994, 24, 818-825.	1.9	17
83	Some characteristics of specific angiotensin II binding sites on bovine brain microvessel endothelial cell monolayers. Peptides, 1991, 12, 535-540.	2.4	16
84	Low-affinity uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (4-Di-1-ASP) in BeWo cells. Biochemical Pharmacology, 2007, 73, 891-900.	4.4	16
85	Investigation of the metabolism of substance P at the blood–brain barrier using LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1409-1415.	2.8	15
86	Effect of Tricylic Antidepressant Drugs on Lymphocyte Membrane Structure. Immunopharmacology and Immunotoxicology, 1984, 6, 105-132.	0.8	14
87	Sequence Recognition of <i>α</i> â€LFAâ€Lâ€derived Peptides by ICAMâ€L Cell Receptors: Inhibitors of Tâ€cell Adhesion. Chemical Biology and Drug Design, 2007, 70, 237-246.	3.2	14
88	National Institute on Drug Abuse Conference report on placental proteins, drug transport, and fetal development. American Journal of Obstetrics and Gynecology, 2004, 191, 1858-1862.	1.3	13
89	Single-site chemical modification at C10 of the baccatin III core of paclitaxel and Taxol C reduces P-glycoprotein interactions in bovine brain microvessel endothelial cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 495-498.	2.2	13
90	Expression and functional activities of selected sulfotransferase isoforms in BeWo cells and primary cytotrophoblast cells. Biochemical Pharmacology, 2009, 78, 1475-1482.	4.4	12

#	Article	IF	CITATIONS
91	Gestational and smoking effects on peptidase activity in the placenta. Peptides, 1998, 19, 1659-1666.	2.4	11
92	Conjugation with L-Glutamate forin vivoBrain Drug Delivery. Journal of Drug Targeting, 2001, 9, 23-37.	4.4	11
93	Synthesis and interactions of 7-deoxy-, 10-deacetoxy, and 10-deacetoxy-7-deoxypaclitaxel with NCI/ADR-RES cancer cells and bovine brain microvessel endothelial cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 433-436.	2.2	11
94	Blood-brain barrier: Mechanisms of peptide regulation and transport. Journal of Controlled Release, 1990, 11, 51-59.	9.9	10
95	The effect of protein binding on ivermectin uptake by bovine brain microvessel endothelial cells. Veterinary Research Communications, 1992, 16, 365-377.	1.6	10
96	Cytotoxic effects of chlorhexidine and nystatin on cultured hamster buccal epithelial cells. International Journal of Pharmaceutics, 1994, 101, 121-126.	5.2	9
97	TCP-FA4: A derivative of tranylcypromine showing improved blood–brain permeability. Biochemical Pharmacology, 2009, 78, 1412-1417.	4.4	9
98	Lipopolysaccharide Increases the Expression of Multidrug Resistance-Associated Protein 1 (MRP1) in RAW 264.7 Macrophages. Journal of NeuroImmune Pharmacology, 2010, 5, 516-520.	4.1	9
99	Aminopeptidases of newborn bovine nasal turbinate epithelial cell cultures. International Journal of Pharmaceutics, 1991, 76, 247-255.	5.2	8
100	(3R,5S,7as)-(3,5-Bis(4-fluorophenyl)tetrahydro-1H-oxazolo[3,4-c]oxazol-7a-yl)methanol, a Novel Neuroprotective Agent⊥. Journal of Medicinal Chemistry, 2009, 52, 7537-7543.	6.4	8
101	A Comprehensive Study Demonstrating that P-glycoprotein Function is Directly Affected by Changes in pH: Implications for Intestinal pH and Effects on Drug Absorption. Journal of Pharmaceutical Sciences, 2011, 100, 4258-4268.	3.3	8
102	Sucralfate effects on mucus synthesis and secretion by human gastric epithelium in vitro. International Journal of Pharmaceutics, 1996, 131, 159-169.	5.2	7
103	Evaluation of antiulcer agents with a human adenocarcinoma cell line (AGS). International Journal of Pharmaceutics, 1996, 129, 103-112.	5.2	6
104	Determination of angiotensin II in blood–brain barrier permeability studies using microbore LC with p-nitrophenyl-2,5-dihydroxyphenylacetate bis-tetrahydropyranyl ether as a pre-separation electrochemical labeling reagent. Analytica Chimica Acta, 1999, 394, 299-308.	5.4	6
105	Use of Fluorescent Probes to Monitor Propranolol Effects on the Murine Splenic Lymphocyte. Immunopharmacology and Immunotoxicology, 1982, 4, 329-353.	0.8	5
106	Tricyclic antidepressant drug effects on liposomal membranes. Biochemical Pharmacology, 1985, 34, 705-708.	4.4	5
107	Ammonium glycyrrhizinate (AMGZ) effects on membrane integrity. International Journal of Pharmaceutics, 1993, 94, 161-170.	5.2	4
108	Demonstration of sucralfate-mediated preservation of growth factor bioactivity in the presence of low pH with a human gastric epithelial cell line (AGS). Pharmaceutical Research, 1996, 13, 1122-1126.	3.5	4

#	Article	IF	CITATIONS
109	The permeation of dynorphin A 1–6 across the blood brain barrier and its effect on bovine brain microvessel endothelial cell monolayer permeability. Peptides, 2012, 38, 414-417.	2.4	4
110	A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. Journal of Pharmaceutical Sciences, 2016, 105, 370-385.	3.3	4
111	Sulfation of hypertensive and hypotensive drugs by monkey brain phenol sulfotransferase. Neurochemical Research, 1993, 18, 783-786.	3.3	3
112	Characterization of Dextromethorphan and Dextrorphan Uptake by a Putative Glutamic Acid Carrier and Passive Diffusion across Brain Microvessel Endothelium. Drug Delivery, 1993, 1, 113-118.	5.7	3
113	Leucine enkephalin effects on brain microvessel endothelial cell monolayer permeability. Pharmaceutical Research, 1994, 11, 1366-1369.	3.5	3
114	Editorial. Journal of Pharmaceutical Sciences, 2015, 104, 288-289.	3.3	0
115	Editorial. Journal of Pharmaceutical Sciences, 2019, 108, 2823.	3.3	Ο
116	2021 Outstanding Early Career Scientists. Journal of Pharmaceutical Sciences, 2022, 111, 285.	3.3	0
117	Top reviewers for 2021. Journal of Pharmaceutical Sciences, 2021, , .	3.3	Ο
118	2022 Scientific Advisors to the Editors (SAEs) Appointments. Journal of Pharmaceutical Sciences, 2022,	3.3	0
119	2022 Editorial Advisory Board (EAB) Appointments. Journal of Pharmaceutical Sciences, 2022, , .	3.3	Ο
120	The Jennifer Dressman Dedicated Issue. Journal of Pharmaceutical Sciences, 2022, 111, 1.	3.3	0
121	The RajÂSuryanarayanan (Sury) Dedicated Issue. Journal of Pharmaceutical Sciences, 2022, 111, 559.	3.3	0