
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/976707/publications.pdf Version: 2024-02-01

TOM BALDOCK

#	Article	IF	CITATIONS
1	Remote Sensing of Wave Overtopping on Dynamic Coastal Structures. Remote Sensing, 2022, 14, 513.	1.8	2
2	Field Observations of Scour Behavior around an Oscillating Water Column Wave Energy Converter. Journal of Marine Science and Engineering, 2022, 10, 320.	1.2	3
3	Physical and numerical modelling of representative tsunami waves propagating and overtopping in converging channels. Coastal Engineering, 2022, 174, 104120.	1.7	4
4	Suppression of Wind Waves in the Presence of Swell: A Physical Modeling Study. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	2
5	Experimental investigation of tsunami runup reduction in the presence of a coastal dune. , 2022, , .		0
6	Assessment and optimisation of runup formulae for beaches fronted by fringing reefs based on physical experiments. Coastal Engineering, 2022, 176, 104163.	1.7	6
7	Experimental measurements of wave-induced scour around a scaled gravity-based Oscillating Water Column Wave Energy Converter. Applied Ocean Research, 2022, 126, 103268.	1.8	1
8	A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models. Coastal Engineering, 2021, 163, 103794.	1.7	9
9	High-resolution, large-scale laboratory measurements of a sandy beach and dynamic cobble berm revetment. Scientific Data, 2021, 8, 22.	2.4	4
10	A Coupled Hydrodynamic-Equilibrium Type Beach Profile Evolution Model. Journal of Marine Science and Engineering, 2021, 9, 353.	1.2	4
11	Comparative wave measurements at a wave energy site with a recently developed low-cost wave buoy (Spotter), ADCP and pressure loggers. Journal of Atmospheric and Oceanic Technology, 2021, , .	0.5	6
12	Wave Peel Tracking: A New Approach for Assessing Surf Amenity and Analysis of Breaking Waves. Remote Sensing, 2021, 13, 3372.	1.8	6
13	Physical and Numerical Modeling of Wave-by-Wave Overtopping along a Truncated Plane Beach. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, 04021025.	0.5	4
14	Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs. Coastal Engineering, 2020, 155, 103594.	1.7	20
15	Experimental investigation into 3D scour processes around a gravity based Oscillating Water Column Wave Energy Converter. Coastal Engineering, 2020, 161, 103754.	1.7	8
16	Laboratory investigation of nourishment options to mitigate sea level rise induced erosion. Coastal Engineering, 2020, 161, 103769.	1.7	14
17	The swash zone. , 2020, , 155-186.		1
18	The influence of wave acceleration and volume on the swash flow driven by breaking waves of elevation. Coastal Engineering, 2020, 158, 103697.	1.7	7

#	Article	IF	CITATIONS
19	Swash overtopping on plane beaches – Reconciling empirical and theoretical scaling laws using the volume flux. Coastal Engineering, 2020, 157, 103668.	1.7	11
20	Influence of storm sequencing on breaker bar and shoreline evolution in large-scale experiments. Coastal Engineering, 2020, 157, 103659.	1.7	18
21	Assessment of Surf Amenity using Computer Vision with Convolutional Neural Networks to Track Wave Pockets. , 2020, , .		2
22	Beach Profile Changes under Sea Level Rise in Laboratory Flume Experiments at Different Scale. Journal of Coastal Research, 2020, 95, 192.	0.1	1
23	Modelling of tsunami wave overtopping in a converging channel. , 2020, , .		1
24	Development and Testing of a Buoyant Parabolic Beach As an Efficient Floating Breakwater. , 2020, , .		0
25	Runup uncertainty on planar beaches. Ocean Dynamics, 2019, 69, 1359-1371.	0.9	14
26	Direct Measurements of Bed Shear Stress under Swash Flows on Steep Laboratory Slopes at Medium to Prototype Scales. Journal of Marine Science and Engineering, 2019, 7, 358.	1.2	7
27	The Influence of Free Long Wave Generation on the Shoaling of Forced Infragravity Waves. Journal of Marine Science and Engineering, 2019, 7, 305.	1.2	9
28	Influence of Grain Size on Sediment Transport during Initial Stages of Horizontal Dam Break–Type Flows. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, 04019009.	0.5	4
29	Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coastal Engineering, 2019, 144, 47-61.	1.7	40
30	Swash Zone Dynamics. Encyclopedia of Earth Sciences Series, 2019, , 1664-1674.	0.1	0
31	Physical model study of beach profile evolution by sea level rise in the presence of seawalls. Coastal Engineering, 2018, 136, 172-182.	1.7	25
32	New Evidence of Breakpoint Forced Long Waves: Laboratory, Numerical, and Field Observations. Journal of Geophysical Research: Oceans, 2018, 123, 2716-2730.	1.0	7
33	Hysteresis in the evolution of beach profile parameters under sequences of wave climates - Part 2; Modelling. Coastal Engineering, 2018, 133, 13-25.	1.7	13
34	Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coastal Engineering, 2018, 136, 183-202.	1.7	53
35	What a Sudden Downpour Reveals About Wind Wave Generation. Procedia IUTAM, 2018, 26, 70-80.	1.2	5
36	"Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup―by Peter Nielsen. Coastal Engineering, 2018, 142, 77-81.	1.7	12

#	Article	IF	CITATIONS
37	Communicating physics-based wave model predictions of coral reefs using Bayesian belief networks. Environmental Modelling and Software, 2018, 108, 123-132.	1.9	11
38	Swash saturation: an assessment of available models. Ocean Dynamics, 2018, 68, 911-922.	0.9	4
39	Video-Based Remote Sensing of Surf Zone Conditions. IEEE Potentials, 2017, 36, 35-41.	0.2	5
40	Momentum transfer under laboratory wind waves. Coastal Engineering, 2017, 121, 255-264.	1.7	12
41	Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone. Journal of Geophysical Research: Oceans, 2017, 122, 3106-3122.	1.0	27
42	Morphological hysteresis in the evolution of beach profiles under sequences of wave climates - Part 1; observations. Coastal Engineering, 2017, 128, 92-105.	1.7	45
43	Improved treatment of non-stationary conditions and uncertainties in probabilistic models of storm wave climate. Coastal Engineering, 2017, 127, 1-19.	1.7	27
44	Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast. Coastal Engineering, 2017, 119, 15-31.	1.7	67
45	Tropical cyclone wind field asymmetry—Development and evaluation of a new parametric model. Journal of Geophysical Research: Oceans, 2017, 122, 458-469.	1.0	43
46	Swash flow properties with bottom resistance based on the method of characteristics. Coastal Engineering, 2016, 114, 25-34.	1.7	19
47	Wave Height Distributions in the Surf Zone on Natural Beaches. Journal of Coastal Research, 2016, 75, 917-921.	0.1	7
48	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	2.8	43
49	Observations of the directional distribution of the wind energy input function over swell waves. Journal of Geophysical Research: Oceans, 2016, 121, 1174-1193.	1.0	9
50	Advances in numerical modelling of swash zone dynamics. Coastal Engineering, 2016, 115, 26-41.	1.7	69
51	Generalized transformation of the lattice Boltzmann method for shallow water flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 371-388.	0.7	7
52	A high-resolution sub-aerial and sub-aqueous laser based laboratory beach profile measurement system. Coastal Engineering, 2016, 107, 28-33.	1.7	13
53	What to do with a Threshold Concept. Educational Futures, 2016, , 195-209.	0.6	7
54	Effect of Submarine Canyons on Tsunami Heights, Currents and Run-Up Off the Southeast Coast of India. Current Science, 2016, 111, 1990.	0.4	2

#	Article	IF	CITATIONS
55	A Framework for Modelling Shoreline Response to Clustered Storm Events: A Case Study from Southeast Australia. Journal of Coastal Research, 2016, 75, 1197-1201.	0.1	4
56	LABORATORY ASSESSMENT OF THE MODIFIED BRUUN RULE EXTENDED FOR LANDWARD TRANSPORT. , 2015, , .		0
57	OBSERVATIONS OF NEARSHORE AND SURF ZONE WIND STRESS. Coastal Engineering Proceedings, 2015, 1, 50.	0.1	1
58	FIELD MEASUREMENTS OF BEACH-DUNE DYNAMIC PROFILES TO ASSESS EROSION HAZARD ON THE COAST OF NSW, AUSTRALIA. Coastal Engineering Proceedings, 2015, 1, 23.	0.1	2
59	LARGE SCALE EXPERIMENTS ON BEACH EVOLUTION INDUCED BY BICHROMATIC WAVE GROUPS WITH VARYING GROUP PERIOD. Coastal Engineering Proceedings, 2015, 1, 3.	0.1	1
60	BED SHEAR STRESS MEAUREMENTS OVER ROUGH FIXED AND MOBILE SEDIMENT BEDS IN SWASH FLOWS. Coastal Engineering Proceedings, 2015, 1, 40.	0.1	0
61	Threshold concepts as a focus for metalearning activity: application of a research-developed mechanism in undergraduate engineering. Innovations in Education and Teaching International, 2015, 52, 277-289.	1.5	5
62	An empirical exploration of metacognitive assessment activities in a third-year civil engineering hydraulics course. European Journal of Engineering Education, 2015, 40, 309-327.	1.5	11
63	A novel method for tracking individual waves in the surf zone. Coastal Engineering, 2015, 98, 26-30.	1.7	10
64	Direct bed shear measurements under loose bed swash flows. Coastal Engineering, 2015, 100, 67-76.	1.7	19
65	Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions. Marine Pollution Bulletin, 2015, 97, 188-198.	2.3	16
66	Measurement and modelling of an artificial coastal lagoon breach. Coastal Engineering, 2015, 101, 1-16.	1.7	9
67	Direct measurements of wind stress over the surf zone. Journal of Geophysical Research: Oceans, 2014, 119, 2949-2973.	1.0	30
68	Classification of Hurricane Hazards: The Importance of Rainfall. Weather and Forecasting, 2014, 29, 1319-1331.	0.5	24
69	ldentifying threshold concepts: case study of an open catchment hydraulics course. European Journal of Engineering Education, 2014, 39, 125-142.	1.5	11
70	Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine Pollution Bulletin, 2014, 83, 155-164.	2.3	41
71	Resilience of branching and massive corals to wave loading under sea level rise – A coupled computational fluid dynamics-structural analysis. Marine Pollution Bulletin, 2014, 86, 91-101.	2.3	40
72	Measurement and modelling of the influence of grain size and pressure gradient on swash uprush sediment transport. Coastal Engineering, 2014, 83, 1-14.	1.7	27

#	Article	IF	CITATIONS
73	Interdependency of tropical marine ecosystems in response to climate change. Nature Climate Change, 2014, 4, 724-729.	8.1	75
74	Flow convergence at the tip and edges of a viscous swash front — Experimental and analytical modeling. Coastal Engineering, 2014, 88, 123-130.	1.7	26
75	Sediment transport and morphodynamics generated by a dam-break swash uprush: Coupled vs uncoupled modeling. Coastal Engineering, 2014, 89, 99-105.	1.7	25
76	Spectral signatures for swash on reflective, intermediate and dissipative beaches. Marine Geology, 2014, 355, 88-97.	0.9	57
77	Statistical modelling of the barrier height fronting a coastal lagoon and the impact of sea-level rise. Coastal Engineering, 2013, 75, 10-20.	1.7	3
78	Surf Zone States and Energy Dissipation Regimes — A Similarity Model. Coastal Engineering Journal, 2013, 55, 1350003-1-1350003-18.	0.7	10
79	Overtopping of solitary waves and solitary bores on a plane beach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3494-3516.	1.0	27
80	An experimental study on sediment transport and bed evolution under different swash zone morphological conditions. Coastal Engineering, 2012, 68, 31-43.	1.7	47
81	Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Marine Geology, 2012, 326-328, 154-165.	0.9	44
82	Improving storm surge estimates: Increased downwards transfer of horizontal momentum by wind-driven waves. Coastal Engineering, 2012, 60, 227-234.	1.7	1
83	Dissipation of incident forced long waves in the surf zone—Implications for the concept of "bound― wave release at short wave breaking. Coastal Engineering, 2012, 60, 276-285.	1.7	83
84	Discussion of "Laboratory investigation of pressure gradients induced by plunging breakersâ€, by Pedrozo-Acuña et al Coastal Engineering, 2012, 66, 1-2.	1.7	7
85	MEASUREMENT AND MODELING OF SOLITARY WAVE INDUCED BED SHEAR STRESS OVER A ROUGH BED. Coastal Engineering Proceedings, 2012, 1, 21.	0.1	0
86	MEASUREMENT AND MODELING OF THE INFLUENCE OF GRAIN SIZE AND PRESSURE GRADIENTS ON SWASH ZONE SEDIMENT TRANSPORT. Coastal Engineering Proceedings, 2012, 1, 58.	0.1	0
87	Swash zone boundary conditions derived from optical remote sensing of swash zone flow patterns. Journal of Geophysical Research, 2011, 116, .	3.3	39
88	Comparison of Bed Shear under Non-Breaking and Breaking Solitary Waves. The International Journal of Ocean and Climate Systems, 2011, 2, 259-278.	0.8	1
89	Overtopping a truncated planar beach. Journal of Fluid Mechanics, 2011, 666, 521-553.	1.4	15
90	Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coastal Engineering, 2011, 58, 214-227.	1.7	81

#	Article	IF	CITATIONS
91	Measurement and modeling of bed shear stress under solitary waves. Coastal Engineering, 2011, 58, 937-947.	1.7	16
92	Downward transfer of momentum by wind-driven waves. Coastal Engineering, 2011, 58, 1118-1124.	1.7	9
93	Swash zone response under various wave regimes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2011, 49, 55-63.	0.7	9
94	BED SHEAR STRESS IN UNSTEADY FLOW. Coastal Engineering Proceedings, 2011, 1, 8.	0.1	5
95	SWASH ZONE BED LEVEL CHANGES AND SEDIMENT ENTRAINMENT AT THE SURF-SWASH BOUNDARY. Coastal Engineering Proceedings, 2011, 1, 28.	0.1	2
96	Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups. Coastal Engineering, 2010, 57, 898-916.	1.7	52
97	Đ ⁻ -Shaped surf beat understood in terms of transient forced long waves. Coastal Engineering, 2010, 57, 71-73.	1.7	18
98	A Lagrangian model for boundary layer growth and bed shear stress in the swash zone. Coastal Engineering, 2010, 57, 385-396.	1.7	43
99	Probability distributions for wave runup on beaches. Coastal Engineering, 2010, 57, 575-584.	1.7	28
100	Assessment of dispersive pressure as a beach placer mechanism. Sedimentology, 2010, 57, 408-417.	1.6	3
101	Discussion of "Effect of Seepage-Induced Nonhydrostatic Pressure Distribution on Bed-Load Transport and Bed Morphodynamics―by Simona Francalanci, Gary Parker, and Luca Solari. Journal of Hydraulic Engineering, 2010, 136, 77-79.	0.7	18
102	Nearshore wave height variation in unsaturated surf. Journal of Geophysical Research, 2010, 115, .	3.3	38
103	Berm formation and dynamics on a gently sloping beach; the effect of water level and swash overtopping. Earth Surface Processes and Landforms, 2009, 34, 1533-1546.	1.2	22
104	Discussion of "Measurement of wave-by-wave bed-levels in the swash zone―by Ian L. Turner, Paul E. Russell, Tony Butt [Coastal Eng. 55 (2008) 1237-1242]. Coastal Engineering, 2009, 56, 380-381.	1.7	9
105	Measurements and modelling of the advection of suspended sediment in the swash zone by solitary waves. Coastal Engineering, 2009, 56, 621-631.	1.7	53
106	Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renewable Energy, 2009, 34, 1134-1144.	4.3	126
107	Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renewable Energy, 2009, 34, 955-964.	4.3	207
108	Kinematics of breaking tsunami wavefronts: A data set from large scale laboratory experiments. Coastal Engineering, 2009, 56, 506-516.	1.7	42

TOM BALDOCK

#	Article	IF	CITATIONS
109	Direct bed shear stress measurements in bore-driven swash. Coastal Engineering, 2009, 56, 853-867.	1.7	98
110	114. REMOTE SENSING OF SWASH ZONE BOUNDARY CONDITIONS USING VIDEO AND ARGUS. , 2009, , .		1
111	LAGRANGIAN MODELLING AND DIRECT BED SHEAR STRESS MEASUREMENT IN THE SWASH ZONE. , 2009, , .		Ο
112	Sediment flux in a rip channel on a barred intermediate beach under low wave energy. , 2009, , .		3
113	8. BOUND WAVE RELEASE INDUCED BY SHORT WAVE BREAKING – TRUE OR FALSE?. , 2009, , .		0
114	Longshore sediment transport estimation using a fuzzy inference system. Applied Ocean Research, 2008, 30, 273-286.	1.8	23
115	A survey of tourist attitudes to renewable energy supply in Australian hotel accommodation. Renewable Energy, 2008, 33, 2174-2185.	4.3	121
116	Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renewable Energy, 2008, 33, 1475-1490.	4.3	240
117	Observations of wave pump efficiency. Coastal Engineering, 2008, 55, 69-72.	1.7	17
118	Lagrangian measurements and modelling of fluid advection in the inner surf and swash zones. Coastal Engineering, 2008, 55, 791-799.	1.7	22
119	Recent advances in modeling swash zone dynamics: Influence of surfâ€swash interaction on nearshore hydrodynamics and morphodynamics. Reviews of Geophysics, 2008, 46, .	9.0	108
120	Morphodynamic evolution of a coastal lagoon entrance during swash overwash. Geomorphology, 2008, 95, 398-411.	1.1	49
121	An analytical model for bore-driven run-up. Journal of Fluid Mechanics, 2008, 610, 183-193.	1.4	24
122	Direct Bed Shear Stress Measurements in Bore-Driven Swash and Swash Interactions. , 2007, , 1947.		3
123	The Influence of Groundwater on Profile Evolution of Fine and Coarse Sand Beaches. , 2007, , 506.		7
124	Suspended Sediment in the Swash Zone: Heuristic Analysis of Spatial and Temporal Variations in Concentration. Journal of Coastal Research, 2007, 236, 1345-1354.	0.1	31
125	Peer Assessment Learning Sessions (PALS): an innovative feedback technique for large engineering classes. European Journal of Engineering Education, 2007, 32, 43-55.	1.5	27
126	GENERATION OF EXTREME WAVE CONDITIONS FROM AN ACCELERATING TROPICAL CYCLONE. , 2007, , .		0

#	Article	IF	CITATIONS
127	Probabilistic-Deterministic Modelling of Swash Zone Morphology. , 2007, , .		5
128	The influence of seaward boundary conditions on swash zone hydrodynamics. Coastal Engineering, 2007, 54, 321-331.	1.7	76
129	Improved representation of breaking wave energy dissipation in parametric wave transformation models. Coastal Engineering, 2007, 54, 765-769.	1.7	41
130	A survey of tourist operator attitudes to renewable energy supply in Queensland, Australia. Renewable Energy, 2007, 32, 567-586.	4.3	38
131	SHEETFLOW SEDIMENT TRANSPORT MODELING: INCLUDING BOUNDARY LAYER STREAMING. , 2007, , .		1
132	SHEET FLOW SEDIMENT TRANSPORT MODELLING USING CONVOLUTION INTEGRALS. , 2007, , .		0
133	Modelling Sheet Flow Sediment Transport Using Convolution Integrals. , 2007, , .		1
134	Swash-aquifer interaction in the vicinity of the water table exit point on a sandy beach. Journal of Geophysical Research, 2006, 111, .	3.3	33
135	Berm Development and Lagoon Closure on a Gently Sloping Beach. , 2006, , 1.		Ο
136	Long wave generation by the shoaling and breaking of transient wave groups on a beach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1853-1876.	1.0	41
137	Beach face and berm morphodynamics fronting a coastal lagoon. Geomorphology, 2006, 82, 331-346.	1.1	80
138	Field observations of instantaneous water slopes and horizontal pressure gradients in the swash-zone. Continental Shelf Research, 2006, 26, 574-588.	0.9	58
139	Field Observations of Instantaneous Cross-Shore Free Surface Profiles and Flow Depths in the Swash Zone. , 2006, , 1.		6
140	Measurement of Groundwater and Swash Interactions on a Sandy Beach. , 2006, , 1.		3
141	Sediment Transport Numerical Modelling in the Swash Zone. , 2006, , 1.		5
142	Large scale experiments on gravel and mixed beaches: Experimental procedure, data documentation and initial results. Coastal Engineering, 2006, 53, 349-362.	1.7	44
143	Numerical solutions of the sediment conservation law; a review and improved formulation for coastal morphological modelling. Coastal Engineering, 2006, 53, 557-571.	1.7	25
144	Atoll lagoon flushing forced by waves. Coastal Engineering, 2006, 53, 691-704.	1.7	89

IF # ARTICLE CITATIONS Undergraduate teaching of ideal and real fluid flows: the value of real-world experimental projects. 145 1.5 European Journal of Engineering Education, 2006, 31, 729-739. ENERGY TRANSFER AND DISSIPATION DURING SURF BEAT CONDITIONS., 2005, , . 146 4 Swash overtopping and sediment overwash on a truncated beach. Coastal Engineering, 2005, 52, 1.7 68 633-645. On the transport of suspended sediment by a swash event on a plane beach, by D. Pritchard and A.J. 148 1.7 4 Hogg. Coastal Engineering, 2005, 52, 811-814. Hindered settling of sand grains. Sedimentology, 2005, 52, 1425-1432. 149 1.6 150 Settling velocity of sediments at high concentrations. Coastal Engineering, 2004, 51, 91-100. 1.7 118 Eulerian flow velocities in the swash zone: Field data and model predictions. Journal of Geophysical 3.3 Research, 2004, 109, n/a-n/a. Long wave forcing on a barred beach. Journal of Fluid Mechanics, 2004, 503, 321-343. 1.4 152 26 SURF BEAT KINEMATICS INDUCED BY RANDOM WAVES., 2003, , . Long–wave forcing by the breaking of random gravity waves on a beach. Proceedings of the Royal 154 1.0 81 Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 2177-2201. Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coastal 258 Engineering, 2002, 45, 149-167. Measurements and modeling of swash-induced pressure gradients in the surface layers of a sand 156 3.3 49 beach. Journal of Geophysical Research, 2001, 106, 2653-2666. STRANDâ€"A Model for Longshore Sediment Transport in the Swash Zone. , 2001, , 3139. Breakpoint generated surf beat induced by bichromatic wave groups. Coastal Engineering, 2000, 39, 158 1.7 86 213-242. Simulation and prediction of swash oscillations on a steep beach. Coastal Engineering, 1999, 36, 219-242. Separation of incident and reflected waves over sloping bathymetry. Coastal Engineering, 1999, 38, 160 1.7 47 167-176. Seepage Effects on Sediment Transport by Waves and Currents., 1999, , 3601.

TOM BALDOCK

3

162 Field Measurements of Swash Induced Pressures within a Sandy Beach. , 1999, , 2812.

#	Article	IF	CITATIONS
163	Cross-shore hydrodynamics within an unsaturated surf zone. Coastal Engineering, 1998, 34, 173-196.	1.7	140
164	Low frequency swash motion induced by wave grouping. Coastal Engineering, 1997, 32, 197-222.	1.7	53
165	A laboratory study of nonlinear surface waves on water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1996, 354, 649-676.	1.6	228
166	Extreme waves in shallow and intermediate water depths. Coastal Engineering, 1996, 27, 21-46.	1.7	42
167	Numerical calculations of large transient water waves. Applied Ocean Research, 1994, 16, 101-112.	1.8	34