
Xiaojun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9762324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy. Analytical Chemistry, 2016, 88, 2119-2124.	6.5	72
2	Colorimetric detection of Cu 2+ by surface coordination complexes of polyethyleneimine-capped Au nanoparticles. Sensors and Actuators B: Chemical, 2016, 223, 411-416.	7.8	51
3	Single Gold Nanoparticle Localized Surface Plasmon Resonance Spectral Imaging for Quantifying Binding Constant of Carbohydrate–Protein Interaction. Analytical Chemistry, 2013, 85, 11851-11857.	6.5	28
4	Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles. Mikrochimica Acta, 2018, 185, 199.	5.0	28
5	Visual and photometric determination of histamine using unmodified gold nanoparticles. Mikrochimica Acta, 2017, 184, 2249-2254.	5.0	25
6	Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chemical Communications, 2019, 55, 11442-11445.	4.1	21
7	Stimuli-Responsive Micelles with Detachable Poly(2-ethyl-2-oxazoline) Shell Based on Amphiphilic Polyurethane for Improved Intracellular Delivery of Doxorubicin. Polymers, 2020, 12, 2642.	4.5	21
8	A Single-Molecule Homogeneous Immunoassay by Counting Spatially "Overlapping―Two-Color Quantum Dots with Wide-Field Fluorescence Microscopy. ACS Sensors, 2018, 3, 2644-2650.	7.8	20
9	A self-driven miniaturized liquid fuel cell. Chemical Communications, 2016, 52, 12068-12071.	4.1	19
10	Reversibly cross-linked poly(ethylene glycol)–poly(amino acid)s copolymer micelles: a promising approach to overcome the extracellular stability versus intracellular drug release challenge. RSC Advances, 2015, 5, 20025-20034.	3.6	17
11	Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Analytical Chemistry, 2021, 93, 3089-3095.	6.5	17
12	Sensing Active Heparin by Counting Aggregated Quantum Dots at Single-Particle Level. ACS Sensors, 2017, 2, 80-86.	7.8	16
13	Asynchrony of spectral blue-shifts of quantum dot based digital homogeneous immunoassay. Chemical Communications, 2018, 54, 13103-13106.	4.1	15
14	Biodegradable reduction and pH dual-sensitive polymer micelles based on poly(2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Advances, 2020, 10, 25435-25445.	3.6	13
15	Low-Numerical Aperture Microscope Objective Boosted by Liquid-Immersed Dielectric Microspheres for Quantum Dot-Based Digital Immunoassays. Analytical Chemistry, 2021, 93, 12848-12853.	6.5	12
16	Viscosity based droplet size controlling in negative pressure driven droplets generator for largeâ€scale particle synthesis. Electrophoresis, 2017, 38, 1736-1742.	2.4	9
17	Multiplexed Homogeneous Immunoassay Based on Counting Single Immunocomplexes together with Dark-Field and Fluorescence Microscopy. Analytical Chemistry, 2022, 94, 5830-5837.	6.5	8
18	Separation of gold nanorods by viscosity gradient centrifugation. Mikrochimica Acta, 2016, 183, 1269-1273.	5.0	6

Χιαοјυν Liu

#	Article	IF	CITATIONS
19	A homogeneous digital biosensor for circulating tumor DNA by the enumeration of a dual-color quantum dot complex. Analyst, The, 2021, 146, 3034-3040.	3.5	3
20	Fast fabrication of a 3D prototyping microfluidic device for liquid cross-flow and droplet high-throughput generation. Journal of Micromechanics and Microengineering, 2020, 30, 047001.	2.6	3
21	A rapid and simple approach for glycoform analysis. Analytica Chimica Acta, 2015, 865, 71-75.	5.4	1
22	Investigation on how spectral overlap between donor–acceptor affects PRET. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1