

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9761507/publications.pdf Version: 2024-02-01

323 papers	46,198 citations	1461 110 h-index	2239 207 g-index
332	332	332	8732
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundamental Research, 2022, 2, 74-83.	1.6	20
2	Newly discovered Early Carboniferous and Late Permian magmatic rocks in eastern Myanmar: Implications for the tectonic evolution of the eastern Paleo-Tethys. Journal of Asian Earth Sciences, 2022, 227, 105093.	1.0	4
3	Matrix effects during in situ U-Pb dating of perovskite with variable crystal structure: Evidence from the Tazheran Massif, Russia. Chemical Geology, 2022, 589, 120685.	1.4	8
4	Natural Allanite Reference Materials for <i>In Situ</i> Uâ€Thâ€Pb and Smâ€Nd Isotopic Measurements by LAâ€(MC)â€ICPâ€MS. Geostandards and Geoanalytical Research, 2022, 46, 169-203.	1.7	9
5	<i>In situ</i> U–Pb geochronology of vesuvianite by LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 69-81.	1.6	7
6	Rapid screening of Zr-containing particles from Chang'e-5 lunar soil samples for isotope geochronology: Technical roadmap for future study. Geoscience Frontiers, 2022, 13, 101367.	4.3	17
7	U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS. Chemical Geology, 2022, 593, 120754.	1.4	16
8	The heterogeneous mantle massif in south Tibetan ophiolites and its implication for the tectonic evolution of Neo-Tethys. Lithos, 2022, 424-425, 106761.	0.6	3
9	é«̃çµæ•度 <bold>-</bold> 啿ޥæ"¶æī <bold>LA-SF-ICP-MS&am SCIENTIA SINICA Terrae, 2022, 52, 1375-1390.</bold>	ıp;lt;/bold&a	ımp;gt;原ä
10	Silurian A-type metaquartz-syenite to -granite in the Eastern Anatolia: Implications for Late Ordovician-Silurian rifting at the northern margin of Gondwana. Gondwana Research, 2021, 91, 1-17.	3.0	12
11	Petrogenesis of the Main Range and Eastern Province granites in eastern Myanmar: New insights from zircon U–Pb ages and Sr–Nd isotopes. Lithos, 2021, 382-383, 105895.	0.6	6
12	Precise and accurate Lu–Hf isotope analysis of columbite-group minerals by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1643-1656.	1.6	3
13	Tectonic Controls on Block Rotation and Sheeted Sill Emplacement in the Xigaze Ophiolite (Tibet): The Construction Mode of Slow‧preading and Ultraslow‧preading Oceanic Crusts. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009297.	1.0	15
14	First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 2021, 558, 116760.	1.8	62
15	Eocene Metamorphism and Anatexis in the Kathmandu Klippe, Central Nepal: Implications for Early Crustal Thickening and Initial Rise of the Himalaya. Tectonics, 2021, 40, e2020TC006532.	1.3	11
16	Was there an exchange of detritus between the northern and southern Black Sea terranes in the Mesozoic-early Cenozoic?. Gondwana Research, 2021, , .	3.0	3
17	Reviews on the Paleozoic-Mesozoic granitoids and sedimentary rocks in North Korea. Journal of the Geological Society of Korea, 2021, 57, 523-544.	0.3	2
18	In situ zircon U Pb dating of Jurassic granitoids in North Korea and its tectonic implications. Lithos, 2021, 398-399, 106346.	0.6	4

#	Article	IF	CITATIONS
19	Recycling of ancient sub-oceanic mantle in the Neo-Tethyan asthenosphere: Evidence from major and trace elements and Hf–Os isotopes of the Kop Mountain ophiolite, NE Turkey. Geochimica Et Cosmochimica Acta, 2021, 311, 43-58.	1.6	5
20	Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen. Lithos, 2021, 398-399, 106222.	0.6	4
21	Foundation of the Institute of Geology, Chinese Academy of Sciences: Inheritation and continuation of the Geological Survey of China. Acta Petrologica Sinica, 2021, 37, 284-316.	0.3	1
22	The Xigaze ophiolite: fossil ultraslow-spreading ocean lithosphere in the Tibetan Plateau. Journal of the Geological Society, 2021, 178, .	0.9	15
23	Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane. Nature, 2021, 600, 59-63.	13.7	124
24	Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts. Nature, 2021, 600, 54-58.	13.7	170
25	Felsic volcanism as a factor driving the end-Permian mass extinction. Science Advances, 2021, 7, eabh1390.	4.7	63
26	Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2020, 278, 122-136.	1.6	72
27	Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites. Geochimica Et Cosmochimica Acta, 2020, 278, 305-321.	1.6	31
28	Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet and its constraint on generation of Himalayan leucogranite. Geochimica Et Cosmochimica Acta, 2020, 278, 137-156.	1.6	52
29	Mesozoic crustal growth in Mainland Southeast Asia: Zircon U-Pb and Hf isotopic evidence from the Late Cretaceous Luyingtang granitic pluton in the northernmost SE Asian granite Province, SW China. Journal of Asian Earth Sciences, 2020, 190, 104151.	1.0	3
30	<i>In situ</i> sequential U–Pb age and Sm–Nd systematics measurements of natural LREE-enriched minerals using single laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 510-517.	1.6	2
31	Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 2020, 352-353, 105319.	0.6	101
32	Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology, 2020, 48, 169-173.	2.0	85
33	Heterogeneous sub-ridge mantle of the Neo-Tethys: Constraints from Re-Os isotope and HSE compositions of the Xigaze ophiolites. Lithos, 2020, 378-379, 105819.	0.6	4
34	Early Evolution of Himalayan Orogenic Belt and Generation of Middle Eocene Magmatism: Constraint From Haweng Granodiorite Porphyry in the Tethyan Himalaya. Frontiers in Earth Science, 2020, 8, .	0.8	32
35	Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights From Wholeâ€Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 2020, 47, e2020GL089202.	1.5	57
36	Natural Clinopyroxene Reference Materials for in situ Sr Isotopic Analysis via LA-MC-ICP-MS. Frontiers in Chemistry, 2020, 8, 594316.	1.8	12

#	Article	IF	CITATIONS
37	Accurate and precise <i>in situ</i> U–Pb isotope dating of wolframite series minerals <i>via</i> LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 2191-2203.	1.6	37
38	Petrogenesis of the Late Triassic Mengsong strongly peraluminous granites in the southeastern Tibetan Plateau: highly fractionated from crystal mush. International Geology Review, 2020, , 1-18.	1.1	1
39	Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision. Gondwana Research, 2020, 88, 296-332.	3.0	32
40	Testing oceanic crust–mantle decoupling by Sr–Nd–Hf–Os isotopes of Neo-Tethyan ophiolites. Lithos, 2020, 376-377, 105757.	0.6	9
41	Identification of Forearc Sediments in the Milin-Zedong Region and Their Constraints on Tectonomagmatic Evolution of the Gangdese Arc, Southern Tibet. Lithosphere, 2020, 2020, .	0.6	3
42	Highâ€Precision Srâ€Ndâ€Hfâ€Pb Isotopic Composition of Chinese Geological Standard Glass Reference Materials CGSGâ€1, CGSGâ€2, CGSGâ€4 and CGSGâ€5 by MCâ€ICPâ€MS and TIMS. Geostandards and Geoanaly Research, 2020, 44, 567-579.	ti c al	9
43	Mesoproterozoic (~1.32ÂGa) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent. Precambrian Research, 2020, 342, 105674.	1.2	18
44	Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush. Lithos, 2020, 360-361, 105452.	0.6	17
45	Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 2020, 358-359, 105421.	0.6	41
46	From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Bulletin of the Geological Society of America, 2020, 132, 2432-2454.	1.6	18
47	Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints. Lithos, 2020, 362-363, 105477.	0.6	15
48	In-sequence buoyancy extrusion of the Himalayan Metamorphic Core, central Nepal: Constraints from monazite petrochronology and thermobarometry. Journal of Asian Earth Sciences, 2020, 199, 104406.	1.0	12
49	Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca) Tj ETQq1 1 0.784314	rgBT /Ove 0.4	erlock 10 Tf
50	The mechanisms of fractional crystallization for the Himalayan leucogranites. Acta Petrologica Sinica, 2020, 36, 3551-3571.	0.3	12
51	Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 2019, 62, 2005-2016.	2.3	91
52	Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 2019, 523, 115707.	1.8	52
53	In Situ Uâ€Thâ€Pb Dating and Srâ€Nd Isotope Analysis of Bastnäte by LAâ€(MC)â€ICPâ€MS. Geostandards and Geoanalytical Research, 2019, 43, 543-565.	1.7	32
54	The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation). Science China Earth Sciences, 2019, 62, 783-797.	2.3	13

#	Article	IF	CITATIONS
55	Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova, 2019, 31, 120-128.	0.9	29
56	Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Bulletin of the Geological Society of America, 2019, 131, 1385-1408.	1.6	22
57	ls Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? A comparative study of leucosome and leucogranite from Nyalam, southern Tibet. Lithos, 2019, 342-343, 542-556.	0.6	39
58	Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos, 2019, 340-341, 71-86.	0.6	64
59	The geology of North Korea: An overview. Earth-Science Reviews, 2019, 194, 57-96.	4.0	53
60	Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	36
61	Natural Titanite Reference Materials for <i>In Situ</i> Uâ€Pb and Smâ€Nd Isotopic Measurements by <scp>LA</scp> â€(<scp>MC</scp>)â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2019, 43, 355-384.	1.7	36
62	Evidence of sub-continental lithospheric mantle sources and open-system crystallization processes from in-situ U–Pb ages and Nd–Sr–Hf isotope geochemistry of the Cretaceous ultramafic-alkaline-(carbonatite) intrusions from the Shillong Plateau, north-eastern India. Lithos, 2019, 330-331, 108-119.	0.6	20
63	Rinkite-(Ce) in the nepheline syenite pegmatite from the Saima alkaline complex, northeastern China: Its occurrence, alteration, and implications for REE mineralization. Canadian Mineralogist, 2019, 57, 903-924.	0.3	8
64	Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 2019, 47, 173-195.	4.6	428
65	Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: zircon U–Pb and Hf isotopic constraints. Journal of the Geological Society, 2019, 176, 574-587.	0.9	36
66	Episodic Nb–Ta mineralisation in South China: Constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating. Ore Geology Reviews, 2019, 105, 71-85.	1.1	58
67	A Palaeoproterozoic basement beneath the Rangnim Massif revealed by the in situ U–Pb ages and Hf isotopes of xenocrystic zircons from Triassic kimberlites of North Korea. Geological Magazine, 2019, 156, 1657-1667.	0.9	4
68	Intra-oceanic arc: Its formation and evolution. Acta Petrologica Sinica, 2019, 35, 1-15.	0.3	23
69	Zircon U-Pb age and Hf isotope of intrusive rocks from the Yawa area in the west part of southern Lhasa terrane, Tibet. Acta Petrologica Sinica, 2019, 35, 423-438.	0.3	5
70	Early Miocene rapid exhumation in southern Tibet: Insights from P–T–t–D–magmatism path of Yardoi dome. Lithos, 2018, 304-307, 38-56.	0.6	20
71	U–Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33, 231-239.	1.6	44
72	Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology, 2018, 479, 228-240.	1.4	54

Ç | Å...f Å•́

#	Article	IF	CITATIONS
73	Mesozoic decratonization of the North China Craton by lithospheric delamination: Evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China. Journal of Asian Earth Sciences, 2018, 160, 396-407.	1.0	21
74	Genesis of late Early Cretaceous high-silica rhyolites in eastern Zhejiang Province, southeast China: A crystal mush origin with mantle input. Lithos, 2018, 296-299, 482-495.	0.6	32
75	Limited recycling of crustal osmium in forearc mantle during slab dehydration. Geology, 2018, 46, 239-242.	2.0	26
76	â€~Premier' evidence for prolonged kimberlite pipe formation and its influence on diamond transport from deep Earth. Geology, 2018, 46, 843-846.	2.0	34
77	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES (Part 2). Journal of Asian Earth Sciences, 2018, 167, 1.	1.0	0
78	Variably evolved gabbroic intrusions within the Xigaze ophiolite (Tibet): new insights into the origin of ophiolite diversity. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	24
79	Magnesium Isotope Composition of Subduction Zone Fluids as Constrained by Jadeitites From Myanmar. Journal of Geophysical Research: Solid Earth, 2018, 123, 7566-7585.	1.4	19
80	<scp>GZ</scp> 7 and <scp>GZ</scp> 8 – Two Zircon Reference Materials for <scp>SIMS</scp> Uâ€₽b Geochronology. Geostandards and Geoanalytical Research, 2018, 42, 431-457.	1.7	32
81	Reply to comment by on the article "Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite―by , Lithos 294, 383–396. Lithos, 2018, 314-315, 688-689.	0.6	0
82	Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, Northwestern Ontario, Canada. Geological Magazine, 2017, 154, 217-236.	0.9	21
83	Decoding Neoarchaean to Palaeoproterozoic tectonothermal events in the Rangnim Massif, North Korea: regional correlation and broader implications. International Geology Review, 2017, 59, 16-28.	1.1	35
84	Highly fractionated granites: Recognition and research. Science China Earth Sciences, 2017, 60, 1201-1219.	2.3	429
85	Craton destruction and related resources. International Journal of Earth Sciences, 2017, 106, 2233-2257.	0.9	143
86	Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
87	Formation age and metasomatism of the sub-continental lithospheric mantle beneath southeast China: Sr-Nd-Hf-Os isotopes of Mingxi mantle xenoliths. Journal of Asian Earth Sciences, 2017, 145, 591-604.	1.0	16
88	Ultra-refractory mantle domains in the Luqu ophiolite (Tibet): Petrology and tectonic setting. Lithos, 2017, 286-287, 252-263.	0.6	30
89	Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics, 2017, 721, 106-122.	0.9	51

90Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye,
Tibetan Himalaya. Contributions To Mineralogy and Petrology, 2017, 172, 1.1.257

#	Article	IF	CITATIONS
91	Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite. Lithos, 2017, 294-295, 383-396.	0.6	10
92	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES. Journal of Asian Earth Sciences, 2017, 145, 297.	1.0	0
93	Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research: Solid Earth, 2017, 122, 5748-5765.	1.4	27
94	A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 2017, 60, 1655-1663.	2.3	79
95	Zircon U-Pb geochronology and Hf isotopes of granitic rocks and river sands in the Nyingchi region, Tibet: Constraints on evolution of the deep crust beneath the southeast Lhasa terrane. Journal of Asian Earth Sciences, 2017, 145, 613-625.	1.0	12
96	Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada). Chemical Geology, 2017, 455, 57-83.	1.4	67
97	U–Pb ages, geochemistry, C–O–Nd–Sr–Hf isotopes and petrogenesis of the Catalão II carbonatitic complex (Alto ParanaÃba Igneous Province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations. International Journal of Earth Sciences, 2017, 106, 1963-1989.	0.9	36
98	Zircon M127 – A Homogeneous Reference Material for <scp>SIMS</scp> U–Pb Geochronology Combined with Hafnium, Oxygen and, Potentially, Lithium Isotope Analysis. Geostandards and Geoanalytical Research, 2016, 40, 457-475.	1.7	49
99	Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 2016, 7, 11888.	5.8	90
100	In-situ U–Pb dating and Nd isotopic analysis of perovskite from a rodingite blackwall associated with UHP serpentinite from southwestern Tianshan, China. Chemical Geology, 2016, 431, 67-82.	1.4	22
101	Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research, 2016, 34, 84-98.	3.0	70
102	Sr–Nd–Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting. Lithos, 2016, 258-259, 133-148.	0.6	49
103	Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures. Geosciences Journal, 2016, 20, 585-596.	0.6	6
104	Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chemical Geology, 2016, 443, 67-86.	1.4	62
105	Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos, 2016, 264, 495-508.	0.6	56
106	Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 2016, 262, 232-246.	0.6	24
107	Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Sciences, 2016, 59, 2355-2388.	2.3	46
108	Age of the Siberian craton crust beneath the northern kimberlite fields: Insights to the craton evolution. Gondwana Research, 2016, 39, 365-385.	3.0	38

#	Article	IF	CITATIONS
109	Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea–Verbano Zone, Western Alps) and geodynamic consequences. Lithos, 2016, 262, 58-74.	0.6	41
110	Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 2016, 117, 184-207.	1.0	59
111	Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 2016, 240-243, 337-354.	0.6	109
112	Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. Journal of Asian Earth Sciences, 2016, 117, 82-106.	1.0	46
113	Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 2016, 44, 311-314.	2.0	171
114	Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology, 2016, 44, 283-286.	2.0	147
115	Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 2016, 667, 163-175.	0.9	46
116	Where are the remnants of a Jurassic ocean in the eastern Mediterranean region?. Gondwana Research, 2016, 33, 63-91.	3.0	38
117	Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 2016, 245, 223-242.	0.6	120
118	A Late Cretaceous (ca. 90 Ma) kimberlite event in southern India: Implication for sub-continental lithospheric mantle evolution and diamond exploration. Gondwana Research, 2016, 35, 378-389.	3.0	52
119	Geochemistry and geochronology of mafic rocks from the Luobusa ophiolite, South Tibet. Lithos, 2016, 245, 93-108.	0.6	75
120	Magmatic record of India-Asia collision. Scientific Reports, 2015, 5, 14289.	1.6	316
121	Late Cretaceous backâ€arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Srâ€Ndâ€Hfâ€O isotopic evidence from Dagze diabases. Journal of Geophysical Research: Solid Earth, 2015, 120, 6159-6181.	1.4	68
122	Granites: From felsic rocks to the recorder of continental evolution. Science China Earth Sciences, 2015, 58, 2353-2354.	2.3	1
123	Multispherical interactions and their effects on the Tibetan Plateau's earth system: a review of the recent researches. National Science Review, 2015, 2, 468-488.	4.6	103
124	Wadeite (K 2 ZrSi 3 O 9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: Its origin and response to multi-stage activities of alkaline fluids. Lithos, 2015, 224-225, 126-142.	0.6	11
125	Detrital zircon U–Pb age and Hf isotopic composition from foreland sediments of the Assam Basin, NE India: Constraints on sediment provenance and tectonics of the Eastern Himalaya. Journal of Asian Earth Sciences, 2015, 111, 254-267.	1.0	33
126	Diagenetic xenotime dating to constrain the initial depositional time of the Yan-Liao Rift. Precambrian Research, 2015, 271, 20-32.	1.2	26

Ç**¦Å...**ā•́

#	Article	IF	CITATIONS
127	In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS. Science China Earth Sciences, 2015, 58, 2134-2144.	2.3	11
128	Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton. Tectonophysics, 2015, 650, 104-112.	0.9	25
129	Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India–Asia collision. Sedimentary Geology, 2015, 315, 1-13.	1.0	21
130	In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geology Reviews, 2015, 65, 979-989.	1.1	110
131	Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 2014, 57, 2878-2890.	2.3	102
132	Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Numerische Mathematik, 2014, 314, 548-579.	0.7	203
133	Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin?. Journal of Asian Earth Sciences, 2014, 80, 34-55.	1.0	78
134	Reply to comment on "Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals― Earth and Planetary Science Letters, 2014, 385, 218-220.	1.8	2
135	U-Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province. Petrology, 2014, 22, 462-479.	0.2	33
136	The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 2014, 210-211, 168-180.	0.6	95
137	Alpine Tethys closure as revealed by amphibole-rich mafic and ultramafic rocks from the Adamello and the Bergell intrusions (Central Alps). Journal of the Geological Society, 2014, 171, 793-799.	0.9	19
138	Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth and Planetary Science Letters, 2014, 404, 283-295.	1.8	104
139	Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 2014, 205, 127-141.	0.6	82
140	Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chemical Geology, 2014, 385, 35-55.	1.4	234
141	Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 2014, 208-209, 118-136.	0.6	147
142	In situ U–Pb dating of bastnaesite by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1017-1023.	1.6	41
143	Magmatic evolution of the Western Myanmar Arc documented by U–Pb and Hf isotopes in detrital zircon. Tectonophysics, 2014, 612-613, 97-105.	0.9	84
144	Initiation of the intra-cratonic Cuddapah basin: Evidence from Paleoproterozoic (1995Ma) anorogenic porphyritic granite in Eastern Dharwar Craton basement. Journal of Asian Earth Sciences, 2014, 79, 235-245.	1.0	15

#	Article	IF	CITATIONS
145	Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 118-123.	1.5	36
146	A â€~hidden' 180-enriched reservoir in the sub-arc mantle. Scientific Reports, 2014, 4, 4232.	1.6	34
147	Age assignment and geological significance of the "Budate Group―in the Hailar Basin. Science China Earth Sciences, 2013, 56, 970-979.	2.3	23
148	High-precision simultaneous determination of 147Sm/144Nd and 143Nd/144Nd ratios in Sm–Nd mixtures using multi-collector inductively coupled plasma mass spectrometry and its comparison to isotope dilution analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 79-80, 82-87.	1.5	15
149	Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chemical Geology, 2013, 357, 52-66.	1.4	63
150	Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa. Earth and Planetary Science Letters, 2013, 381, 188-197.	1.8	77
151	In situ UPb age determination and SrNd isotopic analysis of perovskite from the Premier (Cullinan) kimberlite, South Africa. Chemical Geology, 2013, 353, 83-95.	1.4	45
152	Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1Ga tectonomagmatic event. Chemical Geology, 2013, 353, 48-64.	1.4	96
153	Linking a prolonged Neoâ€Tethyan magmatic arc in <scp>S</scp> outh <scp>A</scp> sia: Zircon Uâ€Pb and Hf isotopic constraints from the Lohit Batholith, <scp>NE I</scp> ndia. Terra Nova, 2013, 25, 453-458.	0.9	48
154	U–Pb ages, Sr–Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto ParanaÃba Igneous Province, Brazil. Chemical Geology, 2013, 353, 65-82.	1.4	68
155	Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chemical Geology, 2013, 353, 210-229.	1.4	58
156	SIMS Pb–Pb and U–Pb age determination of eucrite zircons at<5μm scale and the first 50Ma of the thermal history of Vesta. Geochimica Et Cosmochimica Acta, 2013, 110, 152-175.	1.6	74
157	Petrology, geochemistry and ReOs isotopes of peridotite xenoliths from Maguan, Yunnan Province: Implications for the Cenozoic mantle replacement in southwestern China. Lithos, 2013, 168-169, 1-14.	0.6	19
158	Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals. Earth and Planetary Science Letters, 2013, 374, 156-163.	1.8	43
159	Upper Oligocene–Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. Journal of Geology, 2013, 121, 425-444.	0.7	52
160	Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. Journal of Geology, 2012, 120, 531-541.	0.7	60
161	Crustal evolution of the South Mayo Trough, western Ireland, based on U–Pb ages and Hf–O isotopes in detrital zircons. Journal of the Geological Society, 2012, 169, 681-689.	0.9	18
162	Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology, 2012, 328, 149-167.	1.4	125

Ç**¦Å...**ā•́

#	Article	IF	CITATIONS
163	Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?. Chemical Geology, 2012, 328, 168-184.	1.4	174
164	Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton: Trace-element and Sr-isotope constraints. Chemical Geology, 2012, 328, 123-136.	1.4	59
165	Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt. Chemical Geology, 2012, 328, 109-122.	1.4	27
166	Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age. Chemical Geology, 2012, 332-333, 1-14.	1.4	22
167	Neodymium isotopic compositions of the standard monazites used in U Th Pb geochronology. Chemical Geology, 2012, 334, 221-239.	1.4	96
168	Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. Journal of Analytical Atomic Spectrometry, 2012, 27, 516.	1.6	76
169	Precambrian crustal evolution of the eastern North China Craton as revealed by U–Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing'eryu Formation. Precambrian Research, 2012, 200-203, 184-208.	1.2	64
170	Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 2012, 53, 38-50.	1.0	53
171	Early Eocene crustal thickening in southern Tibet: New age and geochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences, 2012, 53, 82-95.	1.0	160
172	Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chemical Geology, 2012, 291, 186-198.	1.4	87
173	Zircon U–Pb and Hf isotope constraints from the Ailao Shan–Red River shear zone on the tectonic and crustal evolution of southwestern China. Chemical Geology, 2012, 291, 23-37.	1.4	91
174	The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China. Lithos, 2012, 150, 171-187.	0.6	57
175	Zircon U–Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 2012, 150, 6-25.	0.6	151
176	Timing of destruction of the North China Craton. Lithos, 2012, 149, 51-60.	0.6	357
177	Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Palaeo-Mesoproterozoic Cuddapah Basin, southern India: insights from in situ Sr–Nd isotopic analysis on apatite. Geological Society Special Publication, 2012, 365, 185-195.	0.8	21
178	New constraints on the preâ€Permian continental crust growth of Central Asia (West Junggar, China) by U–Pb and Hf isotopic data from detrital zircon. Terra Nova, 2012, 24, 189-198.	0.9	75
179	In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Research, 2012, 21, 745-756.	3.0	99
180	Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 2012, 22, 681-698.	3.0	104

#	Article	IF	CITATIONS
181	Late Cretaceousâ€Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of Indiaâ€Asia initial collision. Basin Research, 2012, 24, 520-543.	1.3	116
182	High precision analysis of Mg isotopic composition in olivine by laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2011, 26, 1773.	1.6	23
183	Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2011, 26, 1237.	1.6	91
184	Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology, 2011, 39, 923-926.	2.0	87
185	In situ U–Pb, Sr and Nd isotopic analysis of loparite by LA-(MC)-ICP-MS. Chemical Geology, 2011, 280, 191-199.	1.4	31
186	Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica Et Cosmochimica Acta, 2011, 75, 3881-3902.	1.6	118
187	The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301, 241-255.	1.8	1,096
188	U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 2011, 304, 356-368.	1.8	75
189	India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 2011, 307, 479-486.	1.8	192
190	High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth and Planetary Science Letters, 2011, 308, 131-140.	1.8	104
191	Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 2011, 41, 1-30.	1.0	1,343
192	Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 2011, 42, 949-968.	1.0	176
193	PbSL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton. Journal of Asian Earth Sciences, 2011, 42, 142-154.	1.0	41
194	Palaeomagnetic constraints from granodioritic plutons (Jiaodong Peninsula): New insights on Late Mesozoic continental extension in Eastern Asia. Physics of the Earth and Planetary Interiors, 2011, 187, 276-291.	0.7	30
195	Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 2011, 189, 140-154.	1.2	104
196	High-precision direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 656-660.	1.5	47
197	Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust–mantle interaction and crustal architecture. Lithos, 2011, 126, 99-114.	0.6	102
198	Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos, 2011, 126, 127-134.	0.6	60

#	Article	IF	CITATIONS
199	Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): Implications for crust–mantle decoupling. Lithos, 2011, 126, 233-247.	0.6	61
200	Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 2011, 127, 261-281.	0.6	135
201	In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos, 2011, 127, 309-322.	0.6	96
202	Zircon U–Pb and Hf isotopic study of Mesozoic felsic rocks from eastern Zhejiang, South China: Geochemical contrast between the Yangtze and Cathaysia blocks. Gondwana Research, 2011, 19, 244-259.	3.0	117
203	U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications. Gondwana Research, 2011, 20, 106-121.	3.0	142
204	Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 2011, 20, 243-254.	3.0	153
205	The compositional variability of eudialyte-group minerals. Mineralogical Magazine, 2011, 75, 87-115.	0.6	69
206	Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Sciences, 2011, 54, 789-797.	2.3	554
207	A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards. International Journal of Mass Spectrometry, 2011, 299, 47-52.	0.7	19
208	U–Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton. Sedimentary Geology, 2011, 236, 129-140.	1.0	124
209	The Â390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction?. Numerische Mathematik, 2010, 310, 1421-1452.	0.7	104
210	Provenance of the Liuqu Conglomerate in southern Tibet: A Paleogene erosional record of the Himalayan–Tibetan orogen. Sedimentary Geology, 2010, 231, 74-84.	1.0	46
211	Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 2010, 114, 413-422.	0.6	101
212	In situ U–Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos, 2010, 115, 205-222.	0.6	77
213	SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension. Lithos, 2010, 119, 427-438.	0.6	216
214	The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 2010, 120, 309-326.	0.6	190
215	Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos, 2010, 120, 421-438.	0.6	108
216	Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Research, 2010, 18, 638-652.	3.0	142

#	Article	IF	CITATIONS
217	Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 2010, 290, 120-126.	0.7	355
218	Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 2010, 38, 799-802.	2.0	117
219	The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society Special Publication, 2010, 338, 117-137.	0.8	84
220	Magnesium isotopic composition of the Earth and chondrites. Geochimica Et Cosmochimica Acta, 2010, 74, 4150-4166.	1.6	381
221	Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica Et Cosmochimica Acta, 2010, 74, 6867-6884.	1.6	210
222	Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes. Earth and Planetary Science Letters, 2010, 297, 287-297.	1.8	75
223	Precise U–Pb and Th–Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chemical Geology, 2010, 269, 396-405.	1.4	90
224	Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 2010, 271, 13-25.	1.4	308
225	In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 2010, 273, 8-34.	1.4	84
226	Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 2010, 276, 144-165.	1.4	419
227	In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chemical Geology, 2010, 277, 178-195.	1.4	69
228	Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 2009, 50, 1857-1898.	1.1	237
229	U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geological Magazine, 2009, 146, 701-716.	0.9	124
230	Zircon U–Pb and Hf isotopic constraints on petrogenesis of the Cretaceous–Tertiary granites in eastern Karakoram and Ladakh, India. Lithos, 2009, 110, 153-166.	0.6	126
231	Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: Extension at 125–100ÂMa and its tectonic significance for South China. Lithos, 2009, 112, 289-305.	0.6	208
232	Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 2009, 112, 477-496.	0.6	138
233	Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China. Lithos, 2009, 113, 347-368.	0.6	120
234	Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences, 2009, 52, 1345-1358.	0.9	155

#	Article	IF	CITATIONS
235	Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D: Earth Sciences, 2009, 52, 1240-1261.	0.9	137
236	Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China Series D: Earth Sciences, 2009, 52, 1319-1330.	0.9	105
237	Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth and Planetary Science Letters, 2009, 278, 131-141.	1.8	75
238	The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 2009, 261, 155-171.	1.4	196
239	Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 2009, 262, 229-245.	1.4	793
240	Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chemical Geology, 2009, 262, 370-379.	1.4	91
241	In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chemical Geology, 2009, 264, 24-42.	1.4	214
242	Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 2009, 266, 364-389.	1.4	351
243	Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 2009, 268, 298-312.	1.4	367
244	Zircon U–Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 2009, 469, 48-60.	0.9	138
245	Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009, 477, 3-19.	0.9	306
246	Are there any 3.8Ga rock at Anshan in the North China Craton?. Precambrian Research, 2009, 172, 361-363.	1.2	17
247	Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U–Pb and Lu–Hf isotope compositions. Journal of Asian Earth Sciences, 2009, 35, 367-376.	1.0	88
248	Evaluating the evolution of the Red River system based on in situ Uâ€₽b dating and Hf isotope analysis of zircons. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	68
249	High-Precision Measurements of the ¹⁴³ Nd/ ¹⁴⁴ Nd Isotope Ratio in Certified Reference Materials without Nd and Sm Separation by Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 2009, 43, 142-150.	1.0	42
250	Accurate measurement of neodymium isotopic composition using Neptune MC-ICP-MS. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 94-98.	0.4	5
251	Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos, 2008, 102, 138-157.	0.6	273
252	Paleoproterozoic crustal growth in the Western Block of the North China Craton: Evidence from detrital zircon Hf and whole rock Sr-nd isotopic compositions of the Khondalites from the Jining Complex. Numerische Mathematik, 2008, 308, 304-327.	0.7	176

#	Article	IF	CITATIONS
253	Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 2008, 163, 210-238.	1.2	111
254	Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 2008, 163, 351-383.	1.2	501
255	Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Research, 2008, 167, 125-149.	1.2	310
256	Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. Numerische Mathematik, 2008, 308, 618-638.	0.7	96
257	Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: Implications for Neoproterozoic rift magmatism. Geochimica Et Cosmochimica Acta, 2008, 72, 3139-3169.	1.6	106
258	Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 2008, 247, 352-383.	1.4	296
259	Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 2008, 253, 222-242.	1.4	152
260	Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 2008, 257, 1-15.	1.4	219
261	Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 2008, 167, 339-362.	1.2	329
262	Geochronology and Tectonic Implications of the "Proterozoic" Seluohe Group at the Northern Margin of the North China Craton. International Geology Review, 2008, 50, 135-153.	1.1	30
263	Mesozoic decratonization of the North China block. Geology, 2008, 36, 467.	2.0	341
264	Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 2007, 26, n/a-n/a.	1.3	90
265	Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate. Geological Society Special Publication, 2007, 280, 171-188.	0.8	24
266	Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 2007, 159, 155-177.	1.2	112
267	Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology, 2007, 238, 232-248.	1.4	172
268	The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 2007, 30, 542-556.	1.0	386
269	Post-collisional, potassic monzonite–minette complex (Shahewan) in the Qinling Mountains (central) Tj ETQq Qinling orogen. Journal of Asian Earth Sciences, 2007, 31, 153-166.	1 0.7843 1.0	614 rgBT /Ov 68
270	Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 2007, 242, 155-175.	1.4	210

Ç **| Å...**f Å•́

#	Article	IF	CITATIONS
271	Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Bulletin of the Geological Society of America, 2007, 119, 1405-1414.	1.6	193
272	Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 2007, 48, 1973-1997.	1.1	227
273	The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 2007, 16, 156-172.	0.5	409
274	Zircon U–Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahighâ€pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. Journal of Metamorphic Geology, 2007, 25, 873-894.	1.6	85
275	Zircon U–Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: constraints on partial melting. Journal of Metamorphic Geology, 2007, 25, 991-1009.	1.6	171
276	Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96, 127-150.	0.6	510
277	Hf isotopic evidence for Paleoarchean (> 3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 2007, 11, 271-277.	0.6	13
278	The lithosphere structure of Northeast China. Frontiers of Earth Science, 2007, 1, 165-171.	0.5	4
279	U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 2006, 241, 581-593.	1.8	319
280	Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2006, 246, 336-352.	1.8	537
281	Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 2006, 251, 179-198.	1.8	466
282	Zircon U–Pb age and Hf isotope evidence for 3.8ÂGa crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 2006, 252, 56-71.	1.8	345
283	Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 2006, 231, 135-158.	1.4	448
284	Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology, 2006, 231, 214-235.	1.4	90
285	"Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: Geochronological, geochemical and Nd–Sr isotopic evidence―– Reply. Chemical Geology, 2006, 235, 186-190.	1.4	8
286	Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology, 2006, 234, 105-126.	1.4	2,230
287	U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica Et Cosmochimica Acta, 2006, 70, 3743-3761.	1.6	271
288	The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica Et Cosmochimica Acta, 2006, 70, 5013-5034.	1.6	291

#	Article	IF	CITATIONS
289	Zircon isotope evidence for ≥3.5Ga continental crust in the Yangtze craton of China. Precambrian Research, 2006, 146, 16-34.	1.2	348
290	Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 2006, 146, 138-164.	1.2	310
291	Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 2006, 146, 179-212.	1.2	349
292	Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 2006, 151, 265-288.	1.2	359
293	lsotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology, 2006, 24, 687-702.	1.6	97
294	Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions To Mineralogy and Petrology, 2006, 153, 177-190.	1.2	434
295	A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 2006, 89, 89-106.	0.6	483
296	Tectonic setting of the Helong Block: Implications for the northern boundary of the eastern North China Craton. Science in China Series D: Earth Sciences, 2005, 48, 1599-1612.	0.9	14
297	Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 2005, 24, 523-545.	1.0	471
298	Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology, 2005, 214, 99-125.	1.4	355
299	Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 2005, 221, 127-156.	1.4	439
300	Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 2005, 222, 200-231.	1.4	131
301	Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 2005, 233, 103-119.	1.8	1,260
302	Metamorphic effect on zircon Lu–Hf and U–Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 2005, 240, 378-400.	1.8	333
303	The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 2005, 407, 65-80.	0.9	249
304	Mesozoic, Not Paleoproterozoic SHRIMP U-Pb Zircon Ages of Two Liaoji Granites, Eastern Block, North China Craton. International Geology Review, 2004, 46, 162-176.	1.1	186
305	Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China. Island Arc, 2004, 13, 484-505.	0.5	188
306	Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica Et Cosmochimica Acta, 2004, 68, 4469-4483.	1.6	188

#	Article	IF	CITATIONS
307	Geochronology and petrogenesis of the post-orogenic Cu–Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 2004, 23, 781-797.	1.0	180
308	A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 2004, 23, 731-744.	1.0	140
309	Metamorphic P-T Path of the Southern Jilin Complex: Implications for Tectonic Evolution of the Eastern Block of the North China Craton. International Geology Review, 2003, 45, 1029-1043.	1.1	63
310	A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geology Reviews, 2003, 23, 125-152.	1.1	390
311	Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 2003, 66, 241-273.	0.6	578
312	Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 2003, 67, 191-204.	0.6	371
313	Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology, 2003, 196, 107-129.	1.4	278
314	Late Pan-African magmatism in northeastern China: SHRIMP U–Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 2003, 122, 311-327.	1.2	274
315	A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 2002, 187, 143-173.	1.4	1,114
316	Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 2001, 59, 171-198.	0.6	472
317	Growth of Asia in the Phanerozoic — Nd Isotopic Evidence. Gondwana Research, 2001, 4, 640-642.	3.0	14
318	Timing of Granite Emplacement in the Central Asian Orogenic Belt of Northeastern China. Gondwana Research, 2001, 4, 823-824.	3.0	10
319	Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 2000, 109, 5-20.	0.6	126
320	Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328, 89-113.	0.9	613
321	Extension of a newly identified 500Ma metamorphic terrane in North East China: further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 2000, 328, 115-130.	0.9	277
322	Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 2000, 23, 82-92.	0.8	1,030
323	Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 1999, 157, 119-146.	1.4	860