Andrew James Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/976141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Protein-Truncating <i>HSD17B13</i> Variant and Protection from Chronic Liver Disease. New England Journal of Medicine, 2018, 378, 1096-1106.	13.9	556
2	Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis. Cell Metabolism, 2013, 17, 695-708.	7.2	452
3	ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. Journal of Clinical Investigation, 2011, 121, 4138-4149.	3.9	431
4	Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014, 19, 821-835.	7.2	395
5	High-Density Lipoprotein Reduces the Human Monocyte Inflammatory Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2071-2077.	1.1	392
6	Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism, 2018, 27, 1096-1110.e5.	7.2	309
7	Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice. Circulation Research, 2013, 112, 1456-1465.	2.0	253
8	Infusion of Reconstituted High-Density Lipoprotein Leads to Acute Changes in Human Atherosclerotic Plaque. Circulation Research, 2008, 103, 1084-1091.	2.0	251
9	Dissociation of Pentameric to Monomeric C-Reactive Protein on Activated Platelets Localizes Inflammation to Atherosclerotic Plaques. Circulation Research, 2009, 105, 128-137.	2.0	234
10	Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down Our Understanding of Macrophage Function?. Frontiers in Immunology, 2014, 5, 470.	2.2	227
11	Regulation of Hematopoietic Stem and Progenitor Cell Mobilization by Cholesterol Efflux Pathways. Cell Stem Cell, 2012, 11, 195-206.	5.2	217
12	Blocking IL-6 trans-Signaling Prevents High-Fat Diet-Induced Adipose Tissue Macrophage Recruitment but Does Not Improve Insulin Resistance. Cell Metabolism, 2015, 21, 403-416.	7.2	208
13	ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circulation Research, 2014, 114, 157-170.	2.0	206
14	Reconstituted High-Density Lipoprotein Increases Plasma High-Density Lipoprotein Anti-Inflammatory Properties and Cholesterol Efflux Capacity in Patients With Type 2 Diabetes. Journal of the American College of Cardiology, 2009, 53, 962-971.	1.2	181
15	Neutrophil Activation Is Attenuated by High-Density Lipoprotein and Apolipoprotein A-I in In Vitro and In Vivo Models of Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1333-1341.	1.1	172
16	Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. Journal of Clinical Investigation, 2017, 127, 2133-2147.	3.9	166
17	ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. Journal of Lipid Research, 2015, 56, 1308-1317.	2.0	165
18	Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nature Medicine, 2013, 19, 586-594.	15.2	162

#	Article	IF	CITATIONS
19	Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis After Myocardial Infarction. Circulation, 2020, 141, 1080-1094.	1.6	155
20	Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. Journal of Clinical Investigation, 2012, 122, 1262-1270.	3.9	139
21	Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 351.	1.8	138
22	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	7.2	133
23	Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia, 2007, 50, 1770-1779.	2.9	132
24	Highâ€density lipoprotein: A potent inhibitor of inflammation. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 710-718.	0.9	106
25	A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease. Frontiers in Pharmacology, 2017, 8, 186.	1.6	100
26	Hypercholesterolemia and reduced HDL-C promote hematopoietic stem cell proliferation and monocytosis: Studies in mice and FH children. Atherosclerosis, 2013, 229, 79-85.	0.4	96
27	miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice. Circulation Research, 2014, 115, 759-769.	2.0	96
28	Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. Journal of Clinical Investigation, 2012, 122, 1677-1687.	3.9	96
29	The Anti Inflammatory Effects of High Density Lipoproteins. Current Medicinal Chemistry, 2009, 16, 667-675.	1.2	93
30	Deletion of ABCA1 and ABCG1 Impairs Macrophage Migration Because of Increased Rac1 Signaling. Circulation Research, 2011, 108, 194-200.	2.0	88
31	Disordered haematopoiesis and athero-thrombosis. European Heart Journal, 2016, 37, 1113-1121.	1.0	86
32	Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathogens, 2019, 15, e1007907.	2.1	86
33	Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis. Diabetes, 2021, 70, 772-787.	0.3	84
34	Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circulation Research, 2020, 127, 877-892.	2.0	77
35	and Plaque Inflammation. Circulation, 2019, 140, 1170-1184.	1.6	76
36	Activation of Liver X Receptor Decreases Atherosclerosis in <i>Ldlr</i> ^{<i>â^'/â^'</i>} Mice in the Absence of ATP-Binding Cassette Transporters A1 and G1 in Myeloid Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 279-284.	1.1	72

#	Article	IF	CITATIONS
37	Structure/Function Relationships of Apolipoprotein A-I Mimetic Peptides. Circulation Research, 2010, 107, 217-227.	2.0	71
38	Anti-atherogenic mechanisms of high density lipoprotein: Effects on myeloid cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 513-521.	1.2	71
39	Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 666.	1.6	68
40	Highâ€density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolinâ€1. British Journal of Pharmacology, 2016, 173, 741-751.	2.7	67
41	Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nature Reviews Cardiology, 2017, 14, 387-400.	6.1	66
42	Interleukin-3/Granulocyte Macrophage Colony–Stimulating Factor Receptor Promotes Stem Cell Expansion, Monocytosis, and Atheroma Macrophage Burden in Mice With Hematopoietic <i>ApoE</i> Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 976-984.	1.1	65
43	Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2547-2552.	1.1	63
44	Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. European Heart Journal, 2018, 39, 2158-2167.	1.0	63
45	<i>Cdkn2a</i> Is an Atherosclerosis Modifier Locus That Regulates Monocyte/Macrophage Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2483-2492.	1.1	60
46	Expanded Granulocyte/Monocyte Compartment in Myeloid-Specific Triple FoxO Knockout Increases Oxidative Stress and Accelerates Atherosclerosis in Mice. Circulation Research, 2013, 112, 992-1003.	2.0	60
47	Disruption of Mammalian Target of Rapamycin Complex 1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis. Circulation Research, 2014, 114, 1576-1584.	2.0	60
48	Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 258-272.e9.	5.2	60
49	S100 family proteins in inflammation and beyond. Advances in Clinical Chemistry, 2020, 98, 173-231.	1.8	57
50	Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis, 2018, 271, 102-110.	0.4	47
51	Cholesterol Efflux Pathways Regulate Myelopoiesis: A Potential Link to Altered Macrophage Function in Atherosclerosis. Frontiers in Immunology, 2014, 5, 490.	2.2	46
52	SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr type 1 diabetic mice. Atherosclerosis, 2018, 271, 166-176.	0.4	46
53	Glycolysis Is Required for LPS-Induced Activation and Adhesion of Human CD14+CD16â^' Monocytes. Frontiers in Immunology, 2019, 10, 2054.	2.2	45
54	Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. Journal of Clinical Investigation, 2019, 129, 4239-4244.	3.9	45

#	Article	IF	CITATIONS
55	Pegylation of High-Density Lipoprotein Decreases Plasma Clearance and Enhances Antiatherogenic Activity. Circulation Research, 2013, 113, e1-e9.	2.0	43
56	Shearâ€sensitive nanocapsule drug release for siteâ€specific inhibition of occlusive thrombus formation. Journal of Thrombosis and Haemostasis, 2017, 15, 972-982.	1.9	43
57	Sugar or Fat?—Metabolic Requirements for Immunity to Viral Infections. Frontiers in Immunology, 2017, 8, 1311.	2.2	42
58	Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis. Haematologica, 2019, 104, 456-467.	1.7	41
59	Deficiency of ATP-Binding Cassette Transporter B6 in Megakaryocyte Progenitors Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 751-758.	1.1	40
60	Origins and diversity of macrophages in health and disease. Clinical and Translational Immunology, 2020, 9, e1222.	1.7	40
61	Diabetesâ€mediated myelopoiesis and the relationship to cardiovascular risk. Annals of the New York Academy of Sciences, 2017, 1402, 31-42.	1.8	39
62	Endogenous Annexin-A1 Regulates Haematopoietic Stem Cell Mobilisation and Inflammatory Response Post Myocardial Infarction in Mice In Vivo. Scientific Reports, 2017, 7, 16615.	1.6	38
63	Reduced plaque formation induced by rosiglitazone in an STZ-diabetes mouse model of atherosclerosis is associated with downregulation of adhesion molecules. Atherosclerosis, 2008, 199, 55-64.	0.4	35
64	TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. IScience, 2019, 12, 41-52.	1.9	33
65	Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis. Clinical Science, 2014, 127, 485-497.	1.8	32
66	Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nature Communications, 2021, 12, 6920.	5.8	32
67	Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. Journal of Molecular and Cellular Cardiology, 2017, 112, 114-122.	0.9	31
68	Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac2-26, Against Myocardial Infarction. Frontiers in Pharmacology, 2019, 10, 269.	1.6	30
69	Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases. Journal of Lipid Research, 2020, 61, 667-675.	2.0	30
70	Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacological Research, 2020, 161, 105212.	3.1	30
71	Proliferating Macrophages Populate Established Atherosclerotic Lesions. Circulation Research, 2014, 114, 236-238.	2.0	29
72	Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS ONE, 2017, 12, e0183931.	1.1	29

#	Article	IF	CITATIONS
73	Postprandial Glucose Spikes, an Important Contributor to Cardiovascular Disease in Diabetes?. Frontiers in Cardiovascular Medicine, 2020, 7, 570553.	1.1	29
74	Macrophage polarization state affects lipid composition and the channeling of exogenous fatty acids into endogenous lipid pools. Journal of Biological Chemistry, 2021, 297, 101341.	1.6	28
75	TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. European Heart Journal, 2017, 38, 3579-3587.	1.0	27
76	Fat for fuel: lipid metabolism in haematopoiesis. Clinical and Translational Immunology, 2019, 8, e1098.	1.7	27
77	NETosis Is Required for S100A8/A9-Induced Granulopoiesis After Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2805-2807.	1.1	27
78	The modern interleukin-1 superfamily: Divergent roles in obesity. Seminars in Immunology, 2016, 28, 441-449.	2.7	26
79	Mitochondria orchestrate macrophage effector functions in atherosclerosis. Molecular Aspects of Medicine, 2021, 77, 100922.	2.7	26
80	Retention of the NLRP3 Inflammasome–Primed Neutrophils in the Bone Marrow Is Essential for Myocardial Infarction–Induced Granulopoiesis. Circulation, 2022, 145, 31-44.	1.6	26
81	Lipoprotein Lipase Deficiency Impairs Bone Marrow Myelopoiesis and Reduces Circulating Monocyte Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 509-519.	1.1	25
82	Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Frontiers in Endocrinology, 2020, 11, 620466.	1.5	25
83	Inhibition of the Renin-Angiotensin System Post Myocardial Infarction Prevents Inflammation-Associated Acute Cardiac Rupture. Cardiovascular Drugs and Therapy, 2017, 31, 145-156.	1.3	24
84	Apo Al Nanoparticles Delivered Post Myocardial Infarction Moderate Inflammation. Circulation Research, 2020, 127, 1422-1436.	2.0	24
85	Interplay between Clonal Hematopoiesis of Indeterminate Potential and Metabolism. Trends in Endocrinology and Metabolism, 2020, 31, 525-535.	3.1	23
86	Shark liver oil supplementation enriches endogenous plasmalogens and reduces markers of dyslipidemia and inflammation. Journal of Lipid Research, 2021, 62, 100092.	2.0	23
87	Artificial Intelligence and the Medical Radiation Profession: How Our Advocacy Must Inform Future Practice. Journal of Medical Imaging and Radiation Sciences, 2019, 50, S15-S19.	0.2	22
88	Anti-Inflammatory Functions of Apolipoprotein A-I and High-Density Lipoprotein Are Preserved in Trimeric Apolipoprotein A-I. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 41-49.	1.3	21
89	High Density Lipoprotein: Assembly, Structure, Cargo, and Functions. ISRN Physiology, 2013, 2013, 1-20.	0.4	21
90	Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thrombosis and Haemostasis, 2016, 115, 762-772.	1.8	20

#	Article	IF	CITATIONS
91	Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis. Clinical and Translational Immunology, 2016, 5, e84.	1.7	20
92	Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. Journal of Biological Chemistry, 2020, 295, 13377-13392.	1.6	20
93	Arginase II Knockout Mouse Displays a Hypertensive Phenotype Despite a Decreased Vasoconstrictory Profile. Hypertension, 2009, 54, 294-301.	1.3	19
94	Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe â^'/â^' mice. Atherosclerosis, 2017, 265, 47-53.	0.4	18
95	Lipidomic Profiling of Murine Macrophages Treated with Fatty Acids of Varying Chain Length and Saturation Status. Metabolites, 2018, 8, 29.	1.3	18
96	Pentameric CRP attenuates inflammatory effects of mmLDL by inhibiting mmLDL–monocyte interactions. Atherosclerosis, 2012, 224, 384-393.	0.4	16
97	Resolution of glucose intolerance in long-term high-fat, high-sucrose-fed mice. Journal of Endocrinology, 2017, 233, 269-279.	1.2	16
98	Hand of FATe: lipid metabolism in hematopoietic stem cells. Current Opinion in Lipidology, 2018, 29, 240-245.	1.2	16
99	Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nature Reviews Immunology, 2021, 21, 669-679.	10.6	16
100	Neutrophils in cardiovascular disease: warmongers, peacemakers, or both?. Cardiovascular Research, 2022, 118, 2596-2609.	1.8	16
101	Impact of freezing on high-density lipoprotein functionality. Analytical Biochemistry, 2008, 379, 213-215.	1.1	15
102	Attack of the NETs! NETosis primes IL-1β-mediated inflammation in diabetic foot ulcers. Clinical Science, 2020, 134, 1399-1401.	1.8	15
103	Disordered haematopoiesis and cardiovascular disease: a focus on myelopoiesis. Clinical Science, 2018, 132, 1889-1899.	1.8	14
104	Apolipoprotein A-I Reduces In-Stent Restenosis and Platelet Activation and Alters Neointimal Cellular Phenotype. JACC Basic To Translational Science, 2018, 3, 200-209.	1.9	14
105	The haematopoietic stem cell niche: a new player in cardiovascular disease?. Cardiovascular Research, 2019, 115, 277-291.	1.8	14
106	Reconstituted HDL: a therapy for atherosclerosis and beyond. Clinical Lipidology, 2009, 4, 731-739.	0.4	13
107	Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovascular Diabetology, 2021, 20, 116.	2.7	13
108	Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxidants and Redox Signaling, 2022, 36, 652-666.	2.5	13

#	Article	IF	CITATIONS
109	Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization. Cell Reports, 2022, 39, 110719.	2.9	13
110	Adipose Modulation of ABCG1 Uncovers an Intimate Link Between Sphingomyelin and Triglyceride Storage. Diabetes, 2015, 64, 689-692.	0.3	11
111	Leptin-deficient obesity prolongs survival in a murine model of myelodysplastic syndrome. Haematologica, 2018, 103, 597-606.	1.7	11
112	Inhibition of interleukinâ€1β signalling promotes atherosclerotic lesion remodelling in mice with inflammatory arthritis. Clinical and Translational Immunology, 2020, 9, e1206.	1.7	11
113	Lack of Strategic Funding and Long-Term Job Security Threaten to Have Profound Effects on Cardiovascular Researcher Retention in Australia. Heart Lung and Circulation, 2020, 29, 1588-1595.	0.2	10
114	Apoptotic Ablation of Platelets Reduces Atherosclerosis in Mice With Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1167-1178.	1.1	10
115	Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis. Molecular Metabolism, 2022, 61, 101514.	3.0	10
116	Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers, 2021, 13, 1968.	1.7	9
117	Effects of high―and lowâ€dose aspirin on adaptive immunity and hypertension in the strokeâ€prone spontaneously hypertensive rat. FASEB Journal, 2019, 33, 1510-1521.	0.2	8
118	Characterization of the circulating and tissue-specific alterations to the lipidome in response to moderate and major cold stress in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R95-R104.	0.9	8
119	It's reticulated: the liver at the heart of atherosclerosis. Journal of Endocrinology, 2018, 238, R1-R11.	1.2	7
120	T-Cell Expression and Release of Kidney Injury Molecule-1 in Response to Glucose Variations Initiates Kidney Injury in Early Diabetes. Diabetes, 2021, 70, 1754-1766.	0.3	7
121	Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. International Journal of Molecular Sciences, 2022, 23, 2234.	1.8	7
122	High intraluminal pressure promotes vascular inflammation via caveolin-1. Scientific Reports, 2021, 11, 5894.	1.6	6
123	DAMPening Mortality in COVID-19. Circulation, 2021, 143, 971-973.	1.6	6
124	C-reactive protein and Fc ^{î3} RIIa functional polymorphisms are not associated with clinical presentation of stable and unstable angina. Thrombosis and Haemostasis, 2007, 97, 681-682.	1.8	6
125	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6
126	The Multiparametric Analysis of Mitochondrial Dynamics in T Cells from Cryopreserved Peripheral Blood Mononuclear Cells (PBMCs). Methods in Molecular Biology, 2020, 2184, 215-224.	0.4	5

#	Article	IF	CITATIONS
127	Lipids and the endothelium: an update. Future Lipidology, 2006, 1, 517-526.	0.5	4
128	Yâ€chromosome lineage determines cardiovascular organ Tâ€cell infiltration in the strokeâ€prone spontaneously hypertensive rat. FASEB Journal, 2018, 32, 2747-2756.	0.2	4
129	Stable Isotopic Tracer Phospholipidomics Reveals Contributions of Key Phospholipid Biosynthetic Pathways to Low Hepatocyte Phosphatidylcholine to Phosphatidylethanolamine Ratio Induced by Free Fatty Acids. Metabolites, 2021, 11, 188.	1.3	4
130	Take me to the liver: adipose tissue macrophages coordinate hepatic neutrophil recruitment. Gut, 2018, 67, 1204-1206.	6.1	3
131	Neutrophil Migratory Patterns: Implications for Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 795784.	1.8	3
132	Hematopoiesis of Indeterminate Potential and Atherothrombotic Risk. Thrombosis and Haemostasis, 2022, 122, 1435-1442.	1.8	3
133	The iPSC Awakens ANGPTL3 in Tangier Disease. EBioMedicine, 2017, 18, 15-16.	2.7	2
134	The Endless Summer. Circulation Research, 2017, 121, 596-598.	2.0	2
135	Mechanisms of Platelet Activation in Diabetes Mellitus. Cardiac and Vascular Biology, 2017, , 137-152.	0.2	2
136	A spontaneously hypertensive diet-induced atherosclerosis-prone mouse model of metabolic syndrome. Biomedicine and Pharmacotherapy, 2021, 139, 111668.	2.5	2
137	RAGE Against the ABCs. Diabetes, 2015, 64, 3981-3983.	0.3	0
138	Abstract 698: Increases Reticulated Platelets due to Enhanced Proliferation and Expansion of Bone Marrow Megakaryocyte Progenitors Accelerates Atherosclerosis in Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
139	Abstract 46: Cellular Cholesterol Homeostasis is Altered in Murine Models of Rheumatoid Arthritis and is Linked to Enhanced Myelopoiesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
140	Manipulation of Fatty Acid Metabolism Impairs Megakaryocyte Differentiation and Platelet Production. Blood, 2021, 138, 577-577.	0.6	0
141	Abstract 78: Inhibition of Mir-33 Overcomes the Deleterious Effects of Diabetes on Atherosclerosis Regression Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
142	Abstract 399: Apolipoprotein Al Suppresses Diabetes-Associated Leukocytosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	1.1	0