Young-Mi Bahk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/975902/publications.pdf

Version: 2024-02-01

471509 395702 1,087 37 17 33 citations h-index g-index papers 39 39 39 1261 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Colossal Absorption of Molecules Inside Single Terahertz Nanoantennas. Nano Letters, 2013, 13, 1782-1786.	9.1	178
2	Enhanced Terahertz Shielding of MXenes with Nanoâ€Metamaterials. Advanced Optical Materials, 2018, 6, 1701076.	7.3	157
3	Plasmon Enhanced Terahertz Emission from Single Layer Graphene. ACS Nano, 2014, 8, 9089-9096.	14.6	80
4	Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas. ACS Nano, 2011, 5, 8340-8345.	14.6	66
5	Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime. Nano Letters, 2015, 15, 6683-6688.	9.1	63
6	Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies. Physical Review Letters, 2015, 115, 125501.	7.8	60
7	Dynamic Terahertz Plasmonics Enabled by Phaseâ€Change Materials. Advanced Optical Materials, 2020, 8, 1900548.	7.3	59
8	Ultimate terahertz field enhancement of single nanoslits. Physical Review B, 2017, 95, .	3.2	40
9	Terahertz Nanoprobing of Semiconductor Surface Dynamics. Nano Letters, 2017, 17, 6397-6401.	9.1	36
10	Optical field enhancement of nanometer-sized gaps at near-infrared frequencies. Optics Express, 2015, 23, 4897.	3.4	29
11	Largeâ€Area Metal Gaps and Their Optical Applications. Advanced Optical Materials, 2019, 7, 1800426.	7.3	27
12	Topology-Changing Broadband Metamaterials Enabled by Closable Nanotrenches. Nano Letters, 2021, 21, 4202-4208.	9.1	24
13	Giant Field Enhancements in Ultrathin Nanoslots above 1 Terahertz. ACS Photonics, 2018, 5, 1885-1890.	6.6	21
14	Terahertz pinch harmonics enabled by single nano rods. Optics Express, 2011, 19, 24775.	3.4	20
15	Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy. Scientific Reports, 2016, 6, 29103.	3.3	18
16	Colossal Terahertz Nonlinearity in Angstrom- and Nanometer-Sized Gaps. ACS Photonics, 2016, 3, 1440-1445.	6.6	18
17	Anomalous extinction in index-matched terahertz nanogaps. Nanophotonics, 2018, 7, 347-354.	6.0	17
18	Selective enhanced resonances of two asymmetric terahertz nano resonators. Optics Express, 2012, 20, 25644.	3.4	16

#	Article	IF	Citations
19	Terahertz field confinement and enhancement in various sub-wavelength structures. Journal of Applied Physics, 2019, 126, .	2.5	16
20	Terahertz quantum plasmonics at nanoscales and angstrom scales. Nanophotonics, 2020, 9, 435-451.	6.0	15
21	Microwave Funneling through Sub-10 nm Nanogaps. ACS Photonics, 2016, 3, 537-542.	6.6	14
22	Quantum dots-nanogap metamaterials fabrication by self-assembly lithography and photoluminescence studies. Optics Express, 2015, 23, 14937.	3.4	13
23	Resonance tuning of electric field enhancement of nanogaps. Applied Physics Express, 2015, 8, 092003.	2.4	12
24	Terahertz field enhancement in asymmetric and tapered nano-gaps. Optics Express, 2016, 24, 2065.	3.4	12
25	Graphene-assisted biosensing based on terahertz nanoslot antennas. Scientific Reports, 2019, 9, 9749.	3.3	12
26	Enhanced Surface Carrier Response by Field Overlapping in Metal Nanopatterned Semiconductor. ACS Photonics, 2018, 5, 4739-4744.	6.6	10
27	Ultrasensitive molecular absorption detection using metal slot antenna arrays. Optics Express, 2015, 23, 19047.	3.4	9
28	Augmented Allâ€Optical Active Terahertz Device Using Grapheneâ€Based Metasurface. Advanced Optical Materials, 2021, 9, 2100462.	7.3	9
29	Detection of Microplastic in Salts Using Terahertz Time-Domain Spectroscopy. Sensors, 2021, 21, 3161.	3.8	9
30	Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	0.9	7
31	Twofold Plasmonic Resonator Based on Polyethylene Terephthalate Thin Films for Terahertz Sensing Applications. ACS Applied Nano Materials, 2021, 4, 8753-8760.	5.0	6
32	Enhanced terahertz conductivity in ultra-thin gold film deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS)-coated Si substrates. Scientific Reports, 2019, 9, 15025.	3.3	4
33	Biochar as a low-cost, eco-friendly, and electrically conductive material for terahertz applications. Scientific Reports, 2021, 11, 18498.	3.3	4
34	Evaluation of moisturizing cream using terahertz time-domain spectroscopy. Current Applied Physics, 2022, , .	2.4	2
35	Terahertz funneling-induced quantum tunneling at angstrom scale. , 2016, , .		1
36	Copper-based etalon filter using antioxidant graphene layer. Nanotechnology, 2020, 31, 445206.	2.6	0

ARTICLE IF CITATIONS

Terahertz nanospectroscopy of surface carrier dynamics in metal-nanopatterned semiconductors.,

o