Pil Joong Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9756903/publications.pdf

Version: 2024-02-01

623734 1058476 14 971 14 14 citations g-index h-index papers 14 14 14 1195 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rice <i>microRNA171f/SCL6</i> module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct, 2022, 6, e374.	1.9	19
2	Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice. International Journal of Molecular Sciences, 2020, 21, 9606.	4.1	26
3	Overexpression of <i>OsTF1L,</i> a rice HDâ€Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnology Journal, 2019, 17, 118-131.	8.3	101
4	Allantoin accumulation through overexpression of <i>ureide permease1</i> improves rice growth under limited nitrogen conditions. Plant Biotechnology Journal, 2019, 17, 1289-1301.	8.3	26
5	Jasmonate Zim-Domain Protein 9 Interacts With Slender Rice 1 to Mediate the Antagonistic Interaction Between Jasmonic and Gibberellic Acid Signals in Rice. Frontiers in Plant Science, 2018, 9, 1866.	3.6	27
6	Overexpression of OsNAC14 Improves Drought Tolerance in Rice. Frontiers in Plant Science, 2018, 9, 310.	3.6	158
7	Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics, 2018, 19, 40.	2.8	60
8	Overexpression of <i>Os<scp>ERF</scp>48</i> causes regulation of <i>Os<scp>CML</scp>16</i> , a calmodulinâ€ike protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal, 2017, 15, 1295-1308.	8.3	131
9	Genome-wide identification of grain filling genes regulated by the OsSMF1 transcription factor in rice. Rice, $2017, 10, 16$.	4.0	23
10	The rice Os <scp>NAC</scp> 6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 2017, 15, 754-764.	8.3	132
11	Genetic chimerism of CRISPR/Cas9-mediated rice mutants. Plant Biotechnology Reports, 2016, 10, 425-435.	1.5	14
12	Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics, 2016, 17, 563.	2.8	104
13	Light-Inducible MiR163 Targets <i>PXMT1</i> Transcripts to Promote Seed Germination and Primary Root Elongation in Arabidopsis. Plant Physiology, 2016, 170, 1772-1782.	4.8	51
14	The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Science, 2015, 241, 199-210.	3.6	99