
Eiji Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/975674/publications.pdf Version: 2024-02-01

FULKOBAVASHI

#	Article	IF	CITATIONS
1	Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Reports Physical Science, 2021, 2, 100648.	2.8	25
2	Function of Porous Carbon Electrode during the Fabrication of Multiporous-Layered-Electrode Perovskite Solar Cells. Photonics, 2020, 7, 133.	0.9	11
3	Activation of Weak Monochromic Photocurrents by White Light Irradiation for Accurate IPCE Measurements of Carbon-Based Multi-Porous-Layered-Electrode Perovskite Solar Cells. Electrochemistry, 2020, 88, 418-422.	0.6	9
4	Amorphous gallium oxide grown by low-temperature PECVD. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 021518.	0.9	13
5	Increasing the efficiency of silicon heterojunction solar cells and modules by light soaking. Solar Energy Materials and Solar Cells, 2017, 173, 43-49.	3.0	65
6	Light-induced performance increase of silicon heterojunction solar cells. Applied Physics Letters, 2016, 109, .	1.5	67
7	Heterojunction solar cells with 23% efficiency on <i>n</i> -type epitaxial kerfless silicon wafers. Progress in Photovoltaics: Research and Applications, 2016, 24, 1295-1303.	4.4	15
8	Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 149, 75-80.	3.0	92
9	High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide. Applied Physics Express, 2015, 8, 015505.	1.1	27
10	High efficiency heterojunction solar cells on n-type kerfless mono crystalline silicon wafers by epitaxial growth. Applied Physics Letters, 2015, 106, .	1.5	32